Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 17110 | | Number of Logic Elements/Cells | 362000 | | Total RAM Bits | 19822592 | | Number of I/O | 704 | | Number of Gates | - | | Voltage - Supply | 1.12V ~ 1.18V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA | | Supplier Device Package | 1517-FBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/5agtfd3h3f40i3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Symbol | Description | Minimum ⁽⁵⁾ | Typical | Maximum ⁽⁵⁾ | Unit | |-----------------------|---|------------------------|------------------|------------------------|------| | V_{CCL_GXBL} | GX and SX speed grades—clock network power (left side) | 1.08/1.12 | $1.1/1.15^{(6)}$ | 1.14/1.18 | V | | V _{CCL_GXBR} | GX and SX speed grades—clock network power (right side) | 1.00/1.12 | 1.1/1.13 | 1.14/1.10 | v | | V _{CCL_GXBL} | GT and ST speed grades—clock network power (left side) | 1.17 | 1.20 | 1.23 | V | | V _{CCL_GXBR} | GT and ST speed grades—clock network power (right side) | 1.17 | 1.20 | 1.23 | V | #### Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines Provides more information about the power supply connection for different data rates. #### **HPS Power Supply Operating Conditions** #### Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices. | Symbol | Description | Condition | Minimum ⁽⁷⁾ | Typical | Maximum ⁽⁷⁾ | Unit | |---------------------|--|--------------------|------------------------|---------|------------------------|------| | | HPS core | -C4, -I5, -C5, -C6 | 1.07 | 1.1 | 1.13 | V | | V _{CC_HPS} | voltage and periphery circuitry power supply | -I3 | 1.12 | 1.15 | 1.18 | V | ⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet ⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. | Symbol/Description | Condition | Transceiver Speed Grade 4 | | | Transc | eiver Speed C | Unit | | |--|---|---------------------------|--|--------------------------------|------------------------------|------------------------------|----------------------|-------| | | Condition | Min | Тур | Max | Min | Тур | Max | Offic | | Run length | _ | _ | _ | 200 | _ | _ | 200 | UI | | Programmable equalization AC and DC gain | AC gain setting = 0 to $3^{(38)}$
DC gain setting = 0 to 1 | Gain and
Response | TLE Respons DC Gain for at Data Rate ain for Arria | : Arria V GX,
s ≤ 3.25 Gbps | , GT, SX, and
across Supp | ST Devices a
orted AC Gai | nd CTLE
in and DC | dB | Table 1-23: Transmitter Specifications for Arria V GX and SX Devices | Symbol/Description | Condition | Transc | eiver Speed C | irade 4 | Transc | eiver Speed G | irade 6 | - Unit | |---|--|--------|---------------|----------|--------|---------------|---------|--------| | Symbol/Description | Condition | Min | Тур | Max | Min | Тур | Max | Offic | | Supported I/O standards | | | | 1.5 V PC | ML | | | | | Data rate | _ | 611 | _ | 6553.6 | 611 | _ | 3125 | Mbps | | V _{OCM} (AC coupled) | _ | _ | 650 | _ | _ | 650 | _ | mV | | V _{OCM} (DC coupled) | ≤ 3.2Gbps ⁽³²⁾ | 670 | 700 | 730 | 670 | 700 | 730 | mV | | | 85-Ω setting | _ | 85 | _ | _ | 85 | _ | Ω | | Differential on-chip | 100- Ω setting | _ | 100 | _ | _ | 100 | _ | Ω | | termination resistors | 120- Ω setting | _ | 120 | _ | _ | 120 | _ | Ω | | | 150- Ω setting | _ | 150 | _ | _ | 150 | _ | Ω | | Intra-differential pair skew | $TX V_{CM} = 0.65 V (AC coupled)$ and slew rate of 15 ps | _ | _ | 15 | _ | _ | 15 | ps | | Intra-transceiver block transmitter channel-to-channel skew | ×6 PMA bonded mode | _ | _ | 180 | _ | _ | 180 | ps | The rate match FIFO supports only up to ±300 parts per million (ppm). The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only. Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices | Symbol/Description | Transceiver S | peed Grade 3 | Unit | |-------------------------------------|---------------|---|------| | Symbol/Description | Min | Max | Onit | | Interface speed (PMA direct mode) | 50 | 153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾ | MHz | | Interface speed (single-width mode) | 25 | 187.5 | MHz | | Interface speed (double-width mode) | 25 | 163.84 | MHz | - CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35 - CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36 ⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected. ⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected. ### CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |--|---|---------------------------------|--------|---------|------------|-----------| | t _{CASC_OUTPJ_DC} ⁽⁶⁷⁾⁽⁷¹⁾ | Period jitter for dedicated clock output | $F_{OUT} \ge 100 \text{ MHz}$ | _ | _ | 175 | ps (p-p) | | CASC_OUTPJ_DC | in cascaded PLLs | F _{OUT} < 100 MHz | _ | _ | 17.5 | mUI (p-p) | | t_{DRIFT} | Frequency drift after PFDENA is disabled for a duration of 100 µs | _ | _ | _ | ±10 | % | | dK _{BIT} | Bit number of Delta Sigma Modulator (DSM) | _ | 8 | 24 | 32 | bits | | k _{VALUE} | Numerator of fraction | _ | 128 | 8388608 | 2147483648 | _ | | f_{RES} | Resolution of VCO frequency | $f_{\rm INPFD} = 100 \ \rm MHz$ | 390625 | 5.96 | 0.023 | Hz | Memory Output Clock Jitter Specifications on page 1-57 Provides more information about the external memory interface clock output jitter specifications. ⁽⁷¹⁾ The cascaded PLL specification is only applicable with the following conditions: [•] Upstream PLL: 0.59 MHz ≤ Upstream PLL BW < 1 MHz [•] Downstream PLL: Downstream PLL BW > 2 MHz | Symbol | Condition | | −l3, −C4 | | | −l5, −C5 | | | -C6 | | Unit | |--|--|------|----------|------|------|----------|------|------|-----|------|------| | Зупірої | Condition | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Onit | | | SERDES factor $J \ge 8^{(76)(78)}$, LVDS TX with RX DPA | (77) | _ | 1600 | (77) | _ | 1500 | (77) | _ | 1250 | Mbps | | | SERDES factor J = 1
to 2, Uses DDR
Registers | (77) | _ | (79) | (77) | _ | (79) | (77) | _ | (79) | Mbps | | Emulated Differential I/
O Standards with Three
External Output Resistor
Network - f _{HSDR} (data
rate) ⁽⁸⁰⁾ | SERDES factor J = 4
to 10 ⁽⁸¹⁾ | (77) | _ | 945 | (77) | _ | 945 | (77) | _ | 945 | Mbps | | Emulated Differential I/
O Standards with One
External Output Resistor
Network - f _{HSDR} (data
rate) ⁽⁸⁰⁾ | SERDES factor J = 4
to 10 ⁽⁸¹⁾ | (77) | _ | 200 | (77) | _ | 200 | (77) | _ | 200 | Mbps | | t _{x Jitter} -True Differential
I/O Standards | Total Jitter for Data
Rate 600 Mbps – 1.25
Gbps | _ | _ | 160 | _ | _ | 160 | _ | _ | 160 | ps | | 1/O Standards | Total Jitter for Data
Rate < 600 Mbps | _ | _ | 0.1 | _ | _ | 0.1 | _ | _ | 0.1 | UI | Arria V GX, GT, SX, and ST Device Datasheet **Altera Corporation** $^{^{(78)}\,}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface. ⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean. You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin. ⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported. | | Symbol | Condition | | −I3, −C4 | | | −l5, −C5 | | -C6 | | | Unit | |------------------|--|--|------|----------|-------|------|----------|-------|------|-----|-------|-------| | | Зупівої | Condition | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Offic | | | TCCS | True Differential I/O
Standards | _ | _ | 150 | _ | _ | 150 | _ | _ | 150 | ps | | | 1003 | Emulated Differential I/O Standards | | _ | 300 | _ | _ | 300 | _ | _ | 300 | ps | | | True Differential I/O
Standards - f _{HSDRDPA}
(data rate) | SERDES factor J =3 to 10 ⁽⁷⁶⁾ | 150 | _ | 1250 | 150 | _ | 1250 | 150 | _ | 1050 | Mbps | | | | SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾ | 150 | _ | 1600 | 150 | _ | 1500 | 150 | _ | 1250 | Mbps | | Receiver | | SERDES factor J = 3
to 10 | (77) | _ | (83) | (77) | _ | (83) | (77) | _ | (83) | Mbps | | | f _{HSDR} (data rate) | SERDES factor J = 1
to 2, uses DDR
registers | (77) | _ | (79) | (77) | _ | (79) | (77) | _ | (79) | Mbps | | DPA Mode | DPA run length | _ | _ | _ | 10000 | _ | _ | 10000 | _ | _ | 10000 | UI | | Soft-CDR
Mode | Soft-CDR ppm tolerance | _ | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | ±ppm | | Non-DPA
Mode | Sampling Window | _ | _ | _ | 300 | _ | _ | 300 | _ | _ | 300 | ps | You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported. | Symbol | Description | Min | Тур | Max | Unit | |-------------------|----------------------|--|-----|-----|------| | $T_{ m din_end}$ | Input data valid end | $(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$ | _ | _ | ns | ### Figure 1-8: Quad SPI Flash Timing Diagram This timing diagram illustrates clock polarity mode 0 and clock phase mode 0. #### **Related Information** Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about Rdelay. ### **SPI Timing Characteristics** Table 1-52: SPI Master Timing Requirements for Arria V Devices The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode. | Symbol | Description | Min | Max | Unit | |-----------|---|-----------|-----|------| | T_{clk} | CLK clock period | 16.67 | _ | ns | | T_{su} | SPI Master-in slave-out (MISO) setup time | 8.35 (86) | _ | ns | ⁽⁸⁵⁾ R_{delay} is set by programming the register qspiregs.rddatacap. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual. Arria V GX, GT, SX, and ST Device Datasheet **Altera Corporation** | Symbol | Description | Min | Max | Unit | |------------------------|---|-----|-----|------| | T_h | SPI MISO hold time | 1 | _ | ns | | T _{dutycycle} | SPI_CLK duty cycle | 45 | 55 | % | | T _{dssfrst} | Output delay SPI_SS valid before first clock edge | 8 | _ | ns | | T _{dsslst} | Output delay SPI_SS valid after last clock edge | 8 | _ | ns | | $T_{ m dio}$ | Master-out slave-in (MOSI) output delay | -1 | 1 | ns | Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual. Figure 1-18: NAND Address Latch Timing Diagram Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet Figure 1-20: NAND Data Read Timing Diagram ### **ARM Trace Timing Characteristics** Table 1-61: ARM Trace Timing Requirements for Arria V Devices Most debugging tools have a mechanism to adjust the capture point of trace data. | Description | Min | Max | Unit | |---------------------------------|------|-----|------| | CLK clock period | 12.5 | _ | ns | | CLK maximum duty cycle | 45 | 55 | % | | CLK to D0 –D7 output data delay | -1 | 1 | ns | #### **UART Interface** The maximum UART baud rate is 6.25 megasymbols per second. #### **GPIO Interface** The minimum detectable general-purpose I/O (GPIO) pulse width is 2 μs . The pulse width is based on a debounce clock frequency of 1 MHz. Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet | Date | Version | Changes | |---------------|------------|--| | December 2015 | 2015.12.16 | Updated Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices table. | | | | Updated F_{clk}, T_{dutycycle}, and T_{dssfrst} specifications. Added T_{qspi_clk}, T_{din_start}, and T_{din_end} specifications. Removed T_{dinmax} specifications. Updated the minimum specification for T_{clk} to 16.67 ns and removed the maximum specification in SPI Master Timing Requirements for Arria V Devices table. Updated Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices table. Updated T_{clk} to T_{sdmmc_clk_out} symbol. Updated T_{sdmmc_clk_out} and T_d specifications. Added T_{sdmmc_clk}, T_{su}, and T_h specifications. Removed T_{dinmax} specifications. Updated the following diagrams: Quad SPI Flash Timing Diagram SD/MMC Timing Diagram Updated configuration .rbf sizes for Arria V devices. Changed instances of Quartus II to Quartus Prime. | | Date | Version | Changes | |---------------|---------|--| | November 2012 | 3.0 | Updated Table 2, Table 4, Table 9, Table 14, Table 16, Table 17, Table 20, Table 21, Table 25, Table 29, Table 36, Table 56, Table 57, and Table 60. Removed table: Transceiver Block Jitter Specifications for Arria V Devices. Added HPS information: Added "HPS Specifications" section. Added Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, and Table 50. Added Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19. Updated Table 3 and Table 5. | | October 2012 | 2.4 | Updated Arria V GX V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, and V_{CCL_GXBL/R} minimum and maximum values, and data rate in Table 4. Added receiver V_{ICM} (AC coupled) and V_{ICM} (DC coupled) values, and transmitter V_{OCM} (AC coupled) and V_{OCM} (DC coupled) values in Table 20 and Table 21. | | August 2012 | 2.3 | Updated the SERDES factor condition in Table 30. | | July 2012 | 2.2 | Updated the maximum voltage for V_I (DC input voltage) in Table 1. Updated Table 20 to include the Arria V GX -I3 speed grade. Updated the minimum value of the fixedclk clock frequency in Table 20 and Table 21. Updated the SERDES factor condition in Table 30. Updated Table 50 to include the IOE programmable delay settings for the Arria V GX -I3 speed grade. | | June 2012 | 2.1 | Updated V _{CCR_GXBL/R} , V _{CCT_GXBL/R} , and V _{CCL_GXBL/R} values in Table 4. | Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet | Symbol | Description | Condition | Minimum ⁽¹¹⁴⁾ | Typical | Maximum ⁽¹¹⁴⁾ | Unit | |--------------------------|--|-----------|--------------------------|---------|--------------------------|------| | V_{CCPT} | Power supply for programmable power technology | _ | 1.45 | 1.50 | 1.55 | V | | V _{CC_AUX} | Auxiliary supply for the programmable power technology | _ | 2.375 | 2.5 | 2.625 | V | | V _{CCPD} (116 | I/O pre-driver (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | V | |) | I/O pre-driver (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | V | | | I/O buffers (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | I/O buffers (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V_{CCIO} | I/O buffers (1.5 V) power supply | _ | 1.425 | 1.5 | 1.575 | V | | | I/O buffers (1.35 V) power supply | _ | 1.283 | 1.35 | 1.45 | V | | | I/O buffers (1.25 V) power supply | _ | 1.19 | 1.25 | 1.31 | V | | | I/O buffers (1.2 V) power supply | _ | 1.14 | 1.2 | 1.26 | V | | | Configuration pins (3.0 V) power supply | _ | 2.85 | 3.0 | 3.15 | V | | V_{CCPGM} | Configuration pins (2.5 V) power supply | _ | 2.375 | 2.5 | 2.625 | V | | | Configuration pins (1.8 V) power supply | _ | 1.71 | 1.8 | 1.89 | V | | V _{CCA} _ | PLL analog voltage regulator power supply | _ | 2.375 | 2.5 | 2.625 | V | | V _{CCD}
FPLL | PLL digital voltage regulator power supply | _ | 1.45 | 1.5 | 1.55 | V | | V _{CCBAT} (117 | Battery back-up power supply (For design security volatile key register) | _ | 1.2 | _ | 3.0 | V | ⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. If you do not use the design security feature in Arria V GZ devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Arria V GZ power-on-reset (POR) circuitry monitors V_{CCBAT} . Arria V GZ devices do not exit POR if V_{CCBAT} is not powered up. ### **Bus Hold Specifications** Table 2-9: Bus Hold Parameters for Arria V GZ Devices | V _{ccio} | | | | | | | | | | | | | | |------------------------------|-------------------|---|-------|------|-------|------|-------|------------|-------|------------|-------|------|------| | Parameter | Symbol | Conditions | 1.2 | 2 V | 1.5 | 5 V | 1.8 | 8 V | 2. | 5 V | 3.0 | V | Unit | | | | | Min | Max | | | Low
sustaining
current | I_{SUSL} | $V_{IN} > V_{IL}$ (maximum) | 22.5 | _ | 25.0 | _ | 30.0 | _ | 50.0 | _ | 70.0 | _ | μΑ | | High sustaining current | I _{SUSH} | $V_{IN} < V_{IH} \label{eq:VIN}$ (minimum) | -22.5 | _ | -25.0 | _ | -30.0 | _ | -50.0 | _ | -70.0 | _ | μА | | Low
overdrive
current | I_{ODL} | $\begin{array}{c} 0 V < V_{IN} < \\ V_{CCIO} \end{array}$ | _ | 120 | _ | 160 | _ | 200 | _ | 300 | _ | 500 | μΑ | | High
overdrive
current | I_{ODH} | 0V < V _{IN} < V _{CCIO} | _ | -120 | _ | -160 | _ | -200 | _ | -300 | _ | -500 | μА | | Bus-hold
trip point | V _{TRIP} | _ | 0.45 | 0.95 | 0.50 | 1.00 | 0.68 | 1.07 | 0.70 | 1.70 | 0.80 | 2.00 | V | ### **On-Chip Termination (OCT) Specifications** If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block. ### Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices OCT calibration accuracy is valid at the time of calibration only. Altera Corporation Arria V GZ Device Datasheet #### **CMU PLL** #### Table 2-26: CMU PLL Specifications for Arria V GZ Devices Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*. | Symbol/Description | Conditions | Transceiver Speed Grade 2 | | | Transceiver Speed Grade 3 | | | - Unit | |-------------------------------------|------------|---------------------------|-----|-------|---------------------------|-----|---------|--------| | Symbol/Description | Conditions | Min | Тур | Max | Min | Тур | Max | Offic | | Supported data range | _ | 600 | _ | 12500 | 600 | _ | 10312.5 | Mbps | | t _{pll_powerdown} (153) | _ | 1 | _ | _ | 1 | _ | _ | μs | | $t_{\mathrm{pll_lock}}^{}^{(154)}$ | _ | | _ | 10 | _ | _ | 10 | μs | #### **Related Information** #### Arria V Device Overview For more information about device ordering codes. #### **ATX PLL** ### Table 2-27: ATX PLL Specifications for Arria V GZ Devices Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*. $t_{\text{pll_powerdown}}$ is the PLL powerdown minimum pulse width. ⁽¹⁵⁴⁾ t_{pll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset. | Symbol | V _{OD} Setting | V _{OD} Value (mV) | V _{OD} Setting | V _{OD} Value (mV) | |---|-------------------------|----------------------------|-------------------------|----------------------------| | | 15 | 300 | 47 | 940 | | | 16 | 320 | 48 | 960 | | | 17 | 340 | 49 | 980 | | | 18 | 360 | 50 | 1000 | | | 19 | 380 | 51 | 1020 | | | 20 | 400 | 52 | 1040 | | | 21 | 420 | 53 | 1060 | | | 22 | 440 | 54 | 1080 | | $ m V_{OD}$ differential peak to peak typical | 23 | 460 | 55 | 1100 | | | 24 | 480 | 56 | 1120 | | | 25 | 500 | 57 | 1140 | | | 26 | 520 | 58 | 1160 | | | 27 | 540 | 59 | 1180 | | | 28 | 560 | 60 | 1200 | | | 29 | 580 | 61 | 1220 | | | 30 | 600 | 62 | 1240 | | | 31 | 620 | 63 | 1260 | | Symbol | Parameter | Min | Тур | Max | Unit | |---|---|-----|-----|------|-----------| | t _{OUTPJ_IO} , (173), (175) | Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | COUTPJ_IO , | Period Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{FOUTPJ_IO} (173), (175), (176) | Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | FOUTPJ_IO TO THE TENT | Period Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{OUTCCJ_IO} (173), (175) | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | | Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{FOUTCCJ_IO} (173), (175), (176) | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 600 | ps (p-p) | | FOUTCCJ_IO * *, * *, * *, * * | Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f_{OUT} < 100 MHz) | _ | _ | 60 | mUI (p-p) | | t _{CASC_OUTPJ_DC} (173), (177) | Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$) | _ | _ | 175 | ps (p-p) | | | Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz) | _ | _ | 17.5 | mUI (p-p) | | dK _{BIT} | Bit number of Delta Sigma Modulator (DSM) | 8 | 24 | 32 | Bits | ⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table. a. Upstream PLL: $0.59 \text{Mhz} \leq \text{Upstream PLL BW} < 1 \text{ MHz}$ b. Downstream PLL: Downstream PLL BW > 2 MHz Altera Corporation Arria V GZ Device Datasheet This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz. ⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition: - Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reconfiguration input for the ALTREMOTE_UPDATE IP core, refer to the "User Watchdog Timer" section. - Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reset_timer input for the ALTREMOTE_UPDATE IP core, refer to the "Remote System Upgrade State Machine" section. ### **User Watchdog Internal Oscillator Frequency Specification** Table 2-65: User Watchdog Internal Oscillator Frequency Specifications | Minimum | Typical | Maximum | Unit | | | |---------|---------|---------|------|--|--| | 5.3 | 7.9 | 12.5 | MHz | | | ### I/O Timing Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer. Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route. #### **Related Information** Arria V Devices Documentation page For the Excel-based I/O Timing spreadsheet ⁽²²⁶⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter. ⁽²²⁷⁾ This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter. ## Glossary Table 2-68: Glossary