
## Intel - 5AGTFD7H3F35I3N Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Obsolete                                                   |
| Number of LABs/CLBs            | 23780                                                      |
| Number of Logic Elements/Cells | 504000                                                     |
| Total RAM Bits                 | 27695104                                                   |
| Number of I/O                  | 544                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 1.12V ~ 1.18V                                              |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                         |
| Package / Case                 | 1152-BBGA, FCBGA Exposed Pad                               |
| Supplier Device Package        | 1152-FBGA (35x35)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/5agtfd7h3f35i3n |
|                                |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# Contents

| ia V GX, GT, SX, and ST Device Datasheet                    |  |
|-------------------------------------------------------------|--|
| Electrical Characteristics                                  |  |
| Operating Conditions                                        |  |
| Switching Characteristics                                   |  |
| Transceiver Performance Specifications                      |  |
| Core Performance Specifications                             |  |
| Periphery Performance                                       |  |
| HPS Specifications                                          |  |
| Configuration Specifications                                |  |
| POR Specifications                                          |  |
| FPGA JTAG Configuration Timing                              |  |
| FPP Configuration Timing                                    |  |
| AS Configuration Timing                                     |  |
| DCLK Frequency Specification in the AS Configuration Scheme |  |
| PS Configuration Timing                                     |  |
| Initialization                                              |  |
| Configuration Files                                         |  |
| Minimum Configuration Time Estimation                       |  |
| Remote System Upgrades                                      |  |
| User Watchdog Internal Oscillator Frequency Specifications  |  |
| I/O Timing                                                  |  |
| Programmable IOE Delay                                      |  |
| Programmable Output Buffer Delay                            |  |
| Glossary                                                    |  |
| Document Revision History                                   |  |

| Arria V GZ Device Datasheet |  |
|-----------------------------|--|
| Electrical Characteristics  |  |

| Symbol                | Description                                                | Minimum <sup>(5)</sup> | Typical          | Maximum <sup>(5)</sup> | Unit |
|-----------------------|------------------------------------------------------------|------------------------|------------------|------------------------|------|
| V <sub>CCL_GXBL</sub> | GX and SX speed grades—clock network power (left side)     | 1.08/1.12              | $1.1/1.15^{(6)}$ | 1.14/1.18              | V    |
| V <sub>CCL_GXBR</sub> | GX and SX speed grades—clock network power<br>(right side) | 1.00/1.12              | 1.1/1.13         | 1.14/1.10              | v    |
| V <sub>CCL_GXBL</sub> | GT and ST speed grades—clock network power (left side)     | 1.17                   | 1.20             | 1.23                   | V    |
| V <sub>CCL_GXBR</sub> | GT and ST speed grades—clock network power (right side)    | 1.17                   | 1.20             | 1.23                   | v    |

#### **Related Information**

## Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

#### **HPS Power Supply Operating Conditions**

#### Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

| Symbol              | Description                                              | Condition          | Minimum <sup>(7)</sup> | Typical | Maximum <sup>(7)</sup> | Unit |
|---------------------|----------------------------------------------------------|--------------------|------------------------|---------|------------------------|------|
|                     | HPS core                                                 | -C4, -I5, -C5, -C6 | 1.07                   | 1.1     | 1.13                   | V    |
| V <sub>CC_HPS</sub> | voltage and<br>periphery<br>circuitry<br>power<br>supply | -I3                | 1.12                   | 1.15    | 1.18                   | V    |

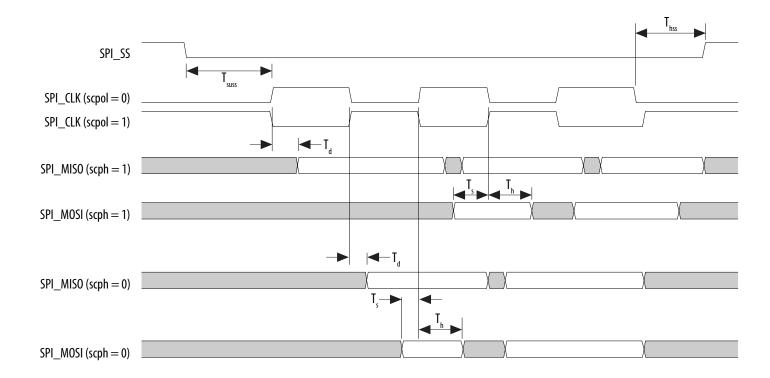
<sup>&</sup>lt;sup>(5)</sup> The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.



<sup>&</sup>lt;sup>(7)</sup> The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

#### 1-62 SPI Timing Characteristics

| Symbol                 | Description                                       | Min | Мах | Unit |
|------------------------|---------------------------------------------------|-----|-----|------|
| T <sub>h</sub>         | SPI MISO hold time                                | 1   | _   | ns   |
| T <sub>dutycycle</sub> | SPI_CLK duty cycle                                | 45  | 55  | %    |
| T <sub>dssfrst</sub>   | Output delay SPI_SS valid before first clock edge | 8   |     | ns   |
| T <sub>dsslst</sub>    | Output delay SPI_SS valid after last clock edge   | 8   |     | ns   |
| T <sub>dio</sub>       | Master-out slave-in (MOSI) output delay           | -1  | 1   | ns   |


**Altera Corporation** 

Arria V GX, GT, SX, and ST Device Datasheet



<sup>(86)</sup> This value is based on rx\_sample\_dly = 1 and spi\_m\_clk = 120 MHz. spi\_m\_clk is the internal clock that is used by SPI Master to derive it's SCLK\_OUT. These timings are based on rx\_sample\_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx\_sample\_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx\_sample\_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

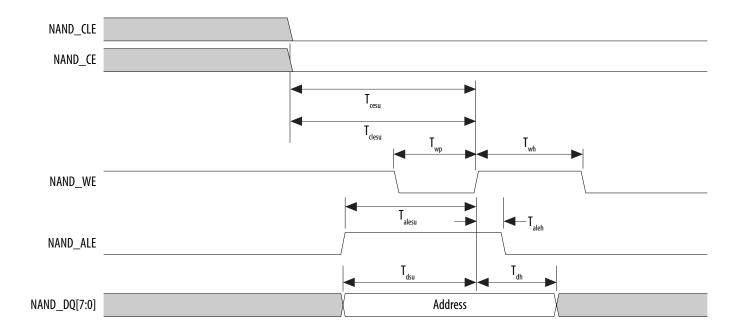
#### Figure 1-10: SPI Slave Timing Diagram



#### **Related Information**

#### SPI Controller, Arria V Hard Processor System Technical Reference Manual

Provides more information about rx\_sample\_delay.


## **SD/MMC Timing Characteristics**

## Table 1-54: Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC\_CLK\_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC\_CLK and the CSEL setting. The value of SDMMC\_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.



## Figure 1-18: NAND Address Latch Timing Diagram







#### 1-76 FPGA JTAG Configuration Timing

| POR Delay | Minimum | Maximum | Unit |
|-----------|---------|---------|------|
| Standard  | 100     | 300     | ms   |

#### **Related Information**

## **MSEL Pin Settings**

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

# **FPGA JTAG Configuration Timing**

## Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

| Symbol                  | Description                              | Min                            | Мах                | Unit |
|-------------------------|------------------------------------------|--------------------------------|--------------------|------|
| t <sub>JCP</sub>        | TCK clock period                         | <b>30, 167</b> <sup>(92)</sup> | _                  | ns   |
| t <sub>JCH</sub>        | TCK clock high time                      | 14                             |                    | ns   |
| t <sub>JCL</sub>        | TCK clock low time                       | 14                             |                    | ns   |
| t <sub>JPSU (TDI)</sub> | TDI JTAG port setup time                 | 2                              |                    | ns   |
| t <sub>JPSU (TMS)</sub> | TMS JTAG port setup time                 | 3                              |                    | ns   |
| t <sub>JPH</sub>        | JTAG port hold time                      | 5                              |                    | ns   |
| t <sub>JPCO</sub>       | JTAG port clock to output                |                                | 12 <sup>(93)</sup> | ns   |
| t <sub>JPZX</sub>       | JTAG port high impedance to valid output |                                | 14 <sup>(93)</sup> | ns   |
| t <sub>JPXZ</sub>       | JTAG port valid output to high impedance | _                              | 14 <sup>(93)</sup> | ns   |



<sup>&</sup>lt;sup>(92)</sup> The minimum TCK clock period is 167 ns if  $V_{CCBAT}$  is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

<sup>&</sup>lt;sup>(93)</sup> A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

| Date         | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2015 | 2015.01.30 | • Updated the description for V <sub>CC_AUX_SHARED</sub> to "HPS auxiliary power supply" in the following tables:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |            | <ul> <li>Absolute Maximum Ratings for Arria V Devices</li> <li>HPS Power Supply Operating Conditions for Arria V SX and ST Devices</li> <li>Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.</li> <li>Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.</li> <li>Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.</li> </ul>                                                                                                                                                                                                                                              |
|              |            | <ul> <li>Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.</li> <li>Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).</li> <li>Changed the symbol for HPS PLL input jitter divide value from NR to N.</li> <li>Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |            | <ul> <li>SPI Master Timing Requirements for Arria V Devices</li> <li>SPI Slave Timing Requirements for Arria V Devices</li> <li>Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.</li> <li>Added HPS JTAG timing specifications.</li> <li>Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V<sub>CCIO</sub> voltage step down from 3.0 V. For example, t<sub>JPCO</sub> = 13 ns if V<sub>CCIO</sub> of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.</li> <li>Updated the value in the V<sub>ICM</sub> (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.</li> </ul> |



| Symbol           | Description                    | Minimum | Maximum | Unit |
|------------------|--------------------------------|---------|---------|------|
| VI               | DC input voltage               | -0.5    | 3.8     | V    |
| T <sub>J</sub>   | Operating junction temperature | -55     | 125     | °C   |
| T <sub>STG</sub> | Storage temperature (No bias)  | -65     | 150     | °C   |
| I <sub>OUT</sub> | DC output current per pin      | -25     | 40      | mA   |

## Table 2-3: Transceiver Power Supply Absolute Conditions for Arria V GZ Devices

| Symbol                | Description                                         | Minimum | Maximum | Unit |
|-----------------------|-----------------------------------------------------|---------|---------|------|
| V <sub>CCA_GXBL</sub> | Transceiver channel PLL power supply (left side)    | -0.5    | 3.75    | V    |
| V <sub>CCA_GXBR</sub> | Transceiver channel PLL power supply (right side)   | -0.5    | 3.75    | V    |
| V <sub>CCHIP_L</sub>  | Transceiver hard IP power supply (left side)        | -0.5    | 1.35    | V    |
| V <sub>CCHSSI_L</sub> | Transceiver PCS power supply (left side)            | -0.5    | 1.35    | V    |
| V <sub>CCHSSI_R</sub> | Transceiver PCS power supply (right side)           | -0.5    | 1.35    | V    |
| V <sub>CCR_GXBL</sub> | Receiver analog power supply (left side)            | -0.5    | 1.35    | V    |
| V <sub>CCR_GXBR</sub> | Receiver analog power supply (right side)           | -0.5    | 1.35    | V    |
| V <sub>CCT_GXBL</sub> | Transmitter analog power supply (left side)         | -0.5    | 1.35    | V    |
| V <sub>CCT_GXBR</sub> | Transmitter analog power supply (right side)        | -0.5    | 1.35    | V    |
| V <sub>CCH_GXBL</sub> | Transmitter output buffer power supply (left side)  | -0.5    | 1.8     | V    |
| V <sub>CCH_GXBR</sub> | Transmitter output buffer power supply (right side) | -0.5    | 1.8     | V    |

## Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in the following table. They may also undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.



**Bus Hold Specifications** 

## Table 2-9: Bus Hold Parameters for Arria V GZ Devices

|                               |                   |                                                                                     | V <sub>CCIO</sub> |      |       |      |       |      |       |      |       |      |      |
|-------------------------------|-------------------|-------------------------------------------------------------------------------------|-------------------|------|-------|------|-------|------|-------|------|-------|------|------|
| Parameter                     | Symbol            | Conditions                                                                          | 1.2               | 2 V  | 1.5   | 5 V  | 1.8   | 8 V  | 2.5   | 5 V  | 3.(   | ) V  | Unit |
|                               |                   |                                                                                     | Min               | Max  | Min   | Max  | Min   | Max  | Min   | Max  | Min   | Max  |      |
| Low<br>sustaining<br>current  | I <sub>SUSL</sub> | V <sub>IN</sub> > V <sub>IL</sub><br>(maximum)                                      | 22.5              |      | 25.0  | _    | 30.0  | _    | 50.0  |      | 70.0  |      | μΑ   |
| High<br>sustaining<br>current | I <sub>SUSH</sub> | V <sub>IN</sub> < V <sub>IH</sub><br>(minimum)                                      | -22.5             |      | -25.0 |      | -30.0 | _    | -50.0 |      | -70.0 | _    | μΑ   |
| Low<br>overdrive<br>current   | I <sub>ODL</sub>  | $\begin{array}{c} 0\mathrm{V} < \mathrm{V_{IN}} < \\ \mathrm{V_{CCIO}} \end{array}$ |                   | 120  | _     | 160  |       | 200  |       | 300  | _     | 500  | μA   |
| High<br>overdrive<br>current  | I <sub>ODH</sub>  | $0V < V_{IN} < V_{CCIO}$                                                            |                   | -120 |       | -160 |       | -200 |       | -300 | _     | -500 | μΑ   |
| Bus-hold<br>trip point        | V <sub>TRIP</sub> | _                                                                                   | 0.45              | 0.95 | 0.50  | 1.00 | 0.68  | 1.07 | 0.70  | 1.70 | 0.80  | 2.00 | V    |

## **On-Chip Termination (OCT) Specifications**

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block.

## Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices

OCT calibration accuracy is valid at the time of calibration only.





| I/O Standard                    | V <sub>CCIO</sub> (V) <sup>(128)</sup> |     |       | V <sub>ID</sub> (mV) <sup>(129)</sup> |                             |     | V <sub>ICM(DC)</sub> (V) |                                | Vo    | <sub>D</sub> (V) <sup>(13</sup> | 0)  | V   | ′ <sub>осм</sub> (V) <sup>(13</sup> | 30) |     |
|---------------------------------|----------------------------------------|-----|-------|---------------------------------------|-----------------------------|-----|--------------------------|--------------------------------|-------|---------------------------------|-----|-----|-------------------------------------|-----|-----|
| 1, 0 5 taniaara                 | Min                                    | Тур | Max   | Min                                   | Condition                   | Max | Min                      | Condition                      | Max   | Min                             | Тур | Max | Min                                 | Тур | Max |
| RSDS<br>(HIO)<br>(133)          | 2.375                                  | 2.5 | 2.625 | 100                                   | V <sub>CM</sub> =<br>1.25 V |     | 0.3                      | _                              | 1.4   | 0.1                             | 0.2 | 0.6 | 0.5                                 | 1.2 | 1.4 |
| Mini-<br>LVDS<br>(HIO)<br>(134) | 2.375                                  | 2.5 | 2.625 | 200                                   | _                           | 600 | 0.4                      | _                              | 1.325 | 0.25                            |     | 0.6 | 1                                   | 1.2 | 1.4 |
| LVPECL                          |                                        | _   | _     | 300                                   |                             |     | 0.6                      | D <sub>MAX</sub> ≤<br>700 Mbps | 1.8   | _                               |     |     | _                                   | _   | _   |
| (135), (136)                    |                                        |     | _     | 300                                   |                             |     | 1                        | D <sub>MAX</sub> ><br>700 Mbps | 1.6   | —                               | _   | _   | _                                   | _   | _   |

#### **Related Information**

**Glossary** on page 2-73



<sup>&</sup>lt;sup>(128)</sup> Differential inputs are powered by VCCPD which requires 2.5 V.

<sup>&</sup>lt;sup>(129)</sup> The minimum VID value is applicable over the entire common mode range, VCM.

RL range:  $90 \le RL \le 110 \Omega$ . (130)

<sup>&</sup>lt;sup>(133)</sup> For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

<sup>&</sup>lt;sup>(134)</sup> For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

<sup>&</sup>lt;sup>(135)</sup> LVPECL is only supported on dedicated clock input pins.

<sup>&</sup>lt;sup>(136)</sup> For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

AV-51002 2017.02.10

| Symbol/Description                                            | Conditions                  | Transce | Transceiver Speed Grade 2 |      |     | eiver Speed ( | Unit |          |
|---------------------------------------------------------------|-----------------------------|---------|---------------------------|------|-----|---------------|------|----------|
| Symbol/Description                                            | Conditions                  | Min     | Тур                       | Max  | Min | Тур           | Max  | Ont      |
|                                                               | 100 Hz                      |         | _                         | -70  |     | _             | -70  | dBc/Hz   |
|                                                               | 1 kHz                       | _       | —                         | -90  | _   | —             | -90  | dBc/Hz   |
| Transmitter REFCLK Phase<br>Noise (622 MHz) <sup>(141)</sup>  | 10 kHz                      |         | —                         | -100 |     | —             | -100 | dBc/Hz   |
|                                                               | 100 kHz                     | _       | —                         | -110 | _   | —             | -110 | dBc/Hz   |
|                                                               | ≥1 MHz                      |         | _                         | -120 |     | —             | -120 | dBc/Hz   |
| Transmitter REFCLK Phase<br>Jitter (100 MHz) <sup>(142)</sup> | 10 kHz to 1.5 MHz<br>(PCIe) |         | _                         | 3    |     | _             | 3    | ps (rms) |
| R <sub>REF</sub>                                              | —                           |         | 1800 ±1%                  |      |     | 1800 ±1%      | _    | Ω        |

#### **Related Information**

## Arria V Device Overview

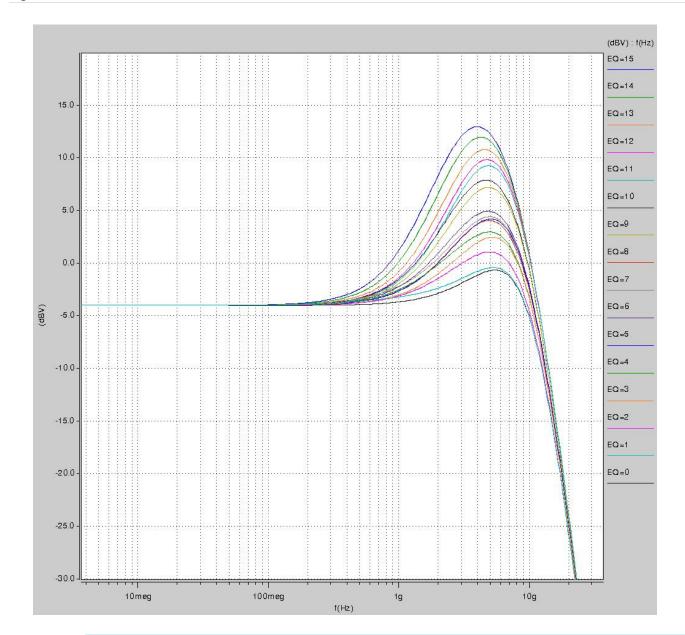
For more information about device ordering codes.

## **Transceiver Clocks**

## Table 2-23: Transceiver Clocks Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet


**Altera Corporation** 



 $<sup>^{(141)}</sup>$  To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20 \*log(f/622).

<sup>&</sup>lt;sup>(142)</sup> To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz  $\times$  100/f.

## Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)



Altera Corporation





AV-51002 2017.02.10

| Symbol                                                 | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min  | Тур | Мах                                            | Unit      |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------------------------------------------|-----------|
| t <sub>INCCJ</sub> <sup>(171)</sup> , <sup>(172)</sup> | Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | —    | _   | 0.15                                           | UI (p-p)  |
| 'INCCJ , , , , ,                                       | Input clock cycle-to-cycle jitter ( $f_{REF} \ge 100 \text{ MHz}$ )<br>Input clock cycle-to-cycle jitter ( $f_{REF} < 100 \text{ MHz}$ )<br>Period Jitter for dedicated clock output in integer<br>PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )<br>Period Jitter for dedicated clock output in integer<br>PLL ( $f_{OUT} < 100 \text{ Mhz}$ )<br>Period Jitter for dedicated clock output in fraction<br>PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )<br>Period Jitter for dedicated clock output in fraction<br>PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )<br>Period Jitter for dedicated clock output in fraction<br>PLL ( $f_{OUT} < 100 \text{ MHz}$ )<br>Cycle-to-cycle Jitter for a dedicated clock output i<br>integer PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )<br>Cycle-to-cycle Jitter for a dedicated clock output i | -750 |     | +750                                           | ps (p-p)  |
| t <sub>outpj_dc</sub> <sup>(173)</sup>                 | Period Jitter for dedicated clock output in integer PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    | _   | 175                                            | ps (p-p)  |
| COUTPJ_DC                                              | Period Jitter for dedicated clock output in integer<br>PLL (f <sub>OUT</sub> < 100 Mhz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _    |     | 17.5                                           | mUI (p-p) |
| t <sub>foutpj_dc</sub> <sup>(173)</sup>                | Period Jitter for dedicated clock output in fractional PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _    |     | $250^{(176)}, \\ 175^{(174)}$                  | ps (p-p)  |
| 4FOUTPJ_DC                                             | Period Jitter for dedicated clock output in fractional<br>PLL (f <sub>OUT</sub> < 100 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | —    |     | $25^{(176)}$ ,<br>17.5 <sup>(174)</sup>        | mUI (p-p) |
| tournoon = c (173)                                     | Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —    |     | 175                                            | ps (p-p)  |
| t <sub>OUTCCJ_DC</sub> <sup>(173)</sup>                | Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ( $f_{OUT} < 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _    |     | 17.5                                           | mUI (p-p) |
| <b>t</b> (173)                                         | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ( $f_{OUT} \ge 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —    |     | 250 <sup>(176)</sup> ,<br>175 <sup>(174)</sup> | ps (p-p)  |
| t <sub>FOUTCCJ_DC</sub> <sup>(173)</sup>               | Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ( $f_{OUT} < 100 \text{ MHz}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     | $25^{(176)}$ ,<br>17.5 <sup>(174)</sup>        | mUI (p-p) |

<sup>(171)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. <sup>(172)</sup> The  $f_{REF}$  is fIN/N specification applies when N = 1.

<sup>(174)</sup> This specification only covered fractional PLL for low bandwidth. The  $f_{VCO}$  for fractional value range 0.20–0.80 must be  $\geq$  1200 MHz.



<sup>(173)</sup> Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

#### 2-42 Memory Block Specifications

| Mode                          | Performar | nce     |    | Unit |  |
|-------------------------------|-----------|---------|----|------|--|
| imoue                         | C3, I3L   | C4      | 14 | Onit |  |
| One sum of two $27 \times 27$ | 380       | 300 290 |    | MHz  |  |
| One sum of two $36 \times 18$ | 380       | 300     |    | MHz  |  |
| One complex 18 × 18           | 400       | 350     |    | MHz  |  |
| One 36 × 36                   | 380       | 300     |    | MHz  |  |
| Modes using Three DSP Blocks  |           | •       |    |      |  |
| One complex 18 × 25           | 340       | 275 265 |    | MHz  |  |
| Modes using Four DSP Blocks   |           |         |    |      |  |
| One complex $27 \times 27$    | 350       | 310     |    | MHz  |  |

## **Memory Block Specifications**

#### Table 2-36: Memory Block Performance Specifications for Arria V GZ Devices

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F<sub>MAX</sub>.

| Memory                            | Mode                              | Resou | rces Used | Performance |     |     |     | Unit |  |
|-----------------------------------|-----------------------------------|-------|-----------|-------------|-----|-----|-----|------|--|
| Memory                            | Moue                              | ALUTs | Memory    | C3          | C4  | I3L | 14  |      |  |
| Single port, all supported widths |                                   | 0     | 1         | 400         | 315 | 400 | 315 | MHz  |  |
| MLAB Simple dua                   | Simple dual-port, x32/x64 depth   | 0     | 1         | 400         | 315 | 400 | 315 | MHz  |  |
| WILAD                             | Simple dual-port, x16 depth (178) | 0     | 1         | 533         | 400 | 533 | 400 | MHz  |  |
|                                   | ROM, all supported widths         | 0     | 1         | 500         | 450 | 500 | 450 | MHz  |  |

<sup>(178)</sup> The F<sub>MAX</sub> specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.



AV-51002 2017.02.10

| Symbol                                                                                               | Conditions                                   | C3, I3L |     |           | C4, I4 |     |           | - Unit |
|------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|-----|-----------|--------|-----|-----------|--------|
| Symbol                                                                                               | Conditions                                   | Min     | Тур | Мах       | Min    | Тур | Max       | Onic   |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) True Differential<br>I/O Standards <sup>(179)</sup> | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       | _   | 625       | 5      |     | 525       | MHz    |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) Single Ended I/O<br>Standards                       | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       |     | 625       | 5      | _   | 525       | MHz    |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) Single Ended I/O<br>Standards                       | Clock boost factor<br>W = 1 to 40 $^{(180)}$ | 5       | _   | 420       | 5      | _   | 420       | MHz    |
| f <sub>HSCLK_OUT</sub> (output clock<br>frequency)                                                   | _                                            | 5       | _   | 625 (181) | 5      | —   | 525 (181) | MHz    |

## Transmitter High-Speed I/O Specifications

## Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

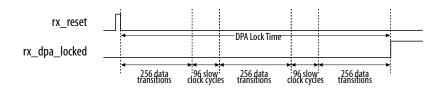


 $<sup>^{(179)}\,</sup>$  This only applies to DPA and soft-CDR modes.

<sup>&</sup>lt;sup>(180)</sup> Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

<sup>&</sup>lt;sup>(181)</sup> This is achieved by using the LVDS clock network.

## DPA Mode High-Speed I/O Specifications


#### Table 2-42: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

| Symbol         | Conditions |     | C3, I3L |       |     | C4, I4 |       |        |
|----------------|------------|-----|---------|-------|-----|--------|-------|--------|
|                | Conditions | Min | Тур     | Max   | Min | Тур    | Max   | – Unit |
| DPA run length | _          |     |         | 10000 | _   | —      | 10000 | UI     |

## Figure 2-3: DPA Lock Time Specification with DPA PLL Calibration Enabled



## Table 2-43: DPA Lock Time Specifications for Arria V GZ Devices

The DPA lock time is for one channel.

One data transition is defined as a 0-to-1 or 1-to-0 transition.

The DPA lock time stated in this table applies to both commercial and industrial grade.

| Standard | Training Pattern    | Number of Data Transitions<br>in One Repetition of the<br>Training Pattern | Number of Repetitions per 256 Data Transitions (201) | Maximum              |
|----------|---------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------|
| SPI-4    | 0000000001111111111 | 2                                                                          | 128                                                  | 640 data transitions |



<sup>&</sup>lt;sup>(201)</sup> This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Note: When you enable the decompression or design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.

## Table 2-56: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1

Use these timing parameters when the decompression and design security features are disabled.

| Symbol                            | Parameter                                    | Minimum                | Maximum     | Unit |
|-----------------------------------|----------------------------------------------|------------------------|-------------|------|
| t <sub>CF2CD</sub>                | nCONFIG low to CONF_DONE low                 | _                      | 600         | ns   |
| t <sub>CF2ST0</sub>               | nCONFIG low to nSTATUS low                   | _                      | 600         | ns   |
| t <sub>CFG</sub>                  | nCONFIG low pulse width                      | 2                      | _           | μs   |
| t <sub>STATUS</sub>               | nSTATUS low pulse width                      | 268                    | 1,506 (205) | μs   |
| t <sub>CF2ST1</sub>               | nCONFIG high to nSTATUS high                 | _                      | 1,506 (206) | μs   |
| t <sub>CF2CK</sub><br>(207)       | nCONFIG high to first rising edge on DCLK    | 1,506                  | _           | μs   |
| t <sub>ST2CK</sub> <sup>(20</sup> | Astatus high to first rising edge of DCLK    | 2                      |             | μs   |
| t <sub>DSU</sub>                  | DATA[] setup time before rising edge on DCLK | 5.5                    | _           | ns   |
| t <sub>DH</sub>                   | DATA[] hold time after rising edge on DCLK   | 0                      | _           | ns   |
| t <sub>CH</sub>                   | DCLK high time                               | $0.45 	imes 1/f_{MAX}$ | —           | s    |
| t <sub>CL</sub>                   | DCLK low time                                | $0.45 	imes 1/f_{MAX}$ | —           | s    |
| t <sub>CLK</sub>                  | DCLK period                                  | 1/f <sub>MAX</sub>     | —           | s    |
| f                                 | DCLK frequency (FPP ×8/×16)                  |                        | 125         | MHz  |
| $f_{MAX}$                         | DCLK frequency (FPP ×32)                     | —                      | 100         | MHz  |
| t <sub>CD2UM</sub>                | CONF_DONE high to user mode <sup>(208)</sup> | 175                    | 437         | μs   |

<sup>&</sup>lt;sup>(205)</sup> This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.



<sup>&</sup>lt;sup>(206)</sup> This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

<sup>&</sup>lt;sup>(207)</sup> If nSTATUS is monitored, follow the t<sub>ST2CK</sub> specification. If nSTATUS is not monitored, follow the t<sub>CF2CK</sub> specification.

#### 2-70 Remote System Upgrades Circuitry Timing Specification

#### Table 2-62: Uncompressed .rbf Sizes for Arria V GZ Devices

| Variant    | Member Code | Member Code Configuration .rbf Size (bits) |         |  |
|------------|-------------|--------------------------------------------|---------|--|
| Arria V GZ | E1          | 137,598,880                                | 562,208 |  |
|            | E3          | 137,598,880                                | 562,208 |  |
|            | E5          | 213,798,880                                | 561,760 |  |
|            | E7          | 213,798,880                                | 561,760 |  |

## Table 2-63: Minimum Configuration Time Estimation for Arria V GZ Devices

|            |             |       | Active Serial <sup>(224)</sup> |                         | Fast Passive Parallel <sup>(225)</sup> |            |                         |  |
|------------|-------------|-------|--------------------------------|-------------------------|----------------------------------------|------------|-------------------------|--|
| Variant    | Member Code | Width | DCLK (MHz)                     | Min Config Time<br>(ms) | Width                                  | DCLK (MHz) | Min Config Time<br>(ms) |  |
|            | E1          | 4     | 100                            | 344                     | 32                                     | 100        | 43                      |  |
| Arria V GZ | E3          | 4     | 100                            | 344                     | 32                                     | 100        | 43                      |  |
|            | E5          | 4     | 100                            | 534                     | 32                                     | 100        | 67                      |  |
|            | E7          | 4     | 100                            | 534                     | 32                                     | 100        | 67                      |  |

# **Remote System Upgrades Circuitry Timing Specification**

## Table 2-64: Remote System Upgrade Circuitry Timing Specifications

| Parameter                                 | Minimum | Maximum | Unit |
|-------------------------------------------|---------|---------|------|
| t <sub>RU_nCONFIG</sub> <sup>(226)</sup>  | 250     | —       | ns   |
| t <sub>RU_nRSTIMER</sub> <sup>(227)</sup> | 250     | _       | ns   |

<sup>(223)</sup> The IOCSR **.rbf** size is specifically for the Configuration via Protocol (CvP) feature.

<sup>(224)</sup> DCLK frequency of 100 MHz using external CLKUSR.

(225) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.



| Term                 | Definition                                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                      | Single-Ended Waveform       Positive Channel (p) = V <sub>0H</sub> $V_{0D}$ Negative Channel (n) = V <sub>0L</sub> VCM       Ground |
|                      | Differential Waveform<br>$V_{0D}$<br>$V_{0D}$<br>$V_{0D}$<br>$v_{0D}$<br>$v_{0D}$                                                   |
| f <sub>HSCLK</sub>   | Left and right PLL input clock frequency.                                                                                           |
| f <sub>HSDR</sub>    | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f <sub>HSDR</sub> = 1/TUI), non-DPA.                              |
| f <sub>HSDRDPA</sub> | High-speed I/O block—Maximum and minimum LVDS data transfer rate (f <sub>HSDRDPA</sub> = 1/TUI), DPA.                               |
| J                    | High-speed I/O block—Deserialization factor (width of parallel data bus).                                                           |





| Term                               | Definition                                                                                                                                                                                                                                                                 |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>C</sub>                     | High-speed receiver and transmitter input and output clock period.                                                                                                                                                                                                         |
| TCCS (channel-to-<br>channel-skew) | The timing difference between the fastest and slowest output edges, including t <sub>CO</sub> variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table). |
| t <sub>DUTY</sub>                  | High-speed I/O block—Duty cycle on the high-speed transmitter output clock.                                                                                                                                                                                                |
| t <sub>FALL</sub>                  | Signal high-to-low transition time (80-20%)                                                                                                                                                                                                                                |
| t <sub>INCCJ</sub>                 | Cycle-to-cycle jitter tolerance on the PLL clock input.                                                                                                                                                                                                                    |
| t <sub>OUTPJ_IO</sub>              | Period jitter on the general purpose I/O driven by a PLL.                                                                                                                                                                                                                  |
| t <sub>OUTPJ_DC</sub>              | Period jitter on the dedicated clock output driven by a PLL.                                                                                                                                                                                                               |
| t <sub>RISE</sub>                  | Signal low-to-high transition time (20-80%)                                                                                                                                                                                                                                |
| Timing Unit Interval<br>(TUI)      | The timing budget allowed for skew, propagation delays, and the data sampling window.<br>(TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_C/w)$                                                                                                 |
| V <sub>CM(DC)</sub>                | DC common mode input voltage.                                                                                                                                                                                                                                              |
| V <sub>ICM</sub>                   | Input common mode voltage—The common mode of the differential signal at the receiver.                                                                                                                                                                                      |
| V <sub>ID</sub>                    | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.                                                                                                               |
| V <sub>DIF(AC)</sub>               | AC differential input voltage—Minimum AC input differential voltage required for switching.                                                                                                                                                                                |
| V <sub>DIF(DC)</sub>               | DC differential input voltage— Minimum DC input differential voltage required for switching.                                                                                                                                                                               |
| V <sub>IH</sub>                    | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.                                                                                                                                                      |
| V <sub>IH(AC)</sub>                | High-level AC input voltage                                                                                                                                                                                                                                                |
| V <sub>IH(DC)</sub>                | High-level DC input voltage                                                                                                                                                                                                                                                |
| V <sub>IL</sub>                    | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.                                                                                                                                                        |
| V <sub>IL(AC)</sub>                | Low-level AC input voltage                                                                                                                                                                                                                                                 |
| V <sub>IL(DC)</sub>                | Low-level DC input voltage                                                                                                                                                                                                                                                 |

Altera Corporation

