
Intel - 5AGTFD7H3F35I5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agtfd7h3f35i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Arria V GX, GT, SX, and ST Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria® V devices.

Arria V devices are offered in commercial and industrial grades. Commercial devices are offered in -C4 (fastest), -C5, and -C6 speed grades. Industrial grade devices are offered in the -I3 and -I5 speed grades.

Related Information

Arria V Device Overview

Provides more information about the densities and packages of devices in the Arria V family.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Arria V devices.

Operating Conditions

Arria V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria V devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Arria V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

[©] 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit	
V _{CCL_GXBL}	GX and SX speed grades—clock network power (left side)	1.08/1.12	$1.1/1.15^{(6)}$	1.14/1.18	V	
V _{CCL_GXBR}	GX and SX speed grades—clock network power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v	
V _{CCL_GXBL}	GT and ST speed grades—clock network power (left side)	1.17	1.20	1.23	V	
V _{CCL_GXBR}	GT and ST speed grades—clock network power (right side)	1.17	1.20	1.23	v	

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

HPS Power Supply Operating Conditions

Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS core	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC_HPS}	voltage and periphery circuitry power supply	-I3	1.12	1.15	1.18	V

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Symbol/Description Condition -		ceiver Speed Gr	ade 4	Transc	eiver Speed G	irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Supported I/O standards	1.2 V PCM	L, 1.4 V PCN	IL,1.5 V PCML	, 2.5 V PCMI	L, Differentia	l LVPECL ⁽²³⁾ ,	HCSL, and	LVDS
Input frequency from REFCLK input pins	_	27		710	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁴⁾			400			400	ps
Fall time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽²⁴⁾	_		400			400	ps
Duty cycle		45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	300 ⁽²⁵⁾ / 2000	200		300 ⁽²⁵⁾ / 2000	mV

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	_	_	670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
f _{out_ext}	output	–5 speed grade	_	_	622 ⁽⁶³⁾	MHz
		-6 speed grade			500 ⁽⁶³⁾	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)		45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	_	10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	_	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
+ (65)(66)	Input dock and to and ittar	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.15	UI (p-p)
t _{INCCJ} ⁽⁶⁵⁾⁽⁶⁶⁾	Input clock cycle-to-cycle jitter	$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

HPS Clock Performance

Table 1-48: HPS Clock Performance for Arria V Devices

Symbol/Description	-I3	-C4	–C5, –I5	-C6	Unit
mpu_base_clk (microprocessor unit clock)	1050	925	800	700	MHz
main_base_clk (L3/L4 interconnect clock)	400	400	400	350	MHz
h2f_user0_clk	100	100	100	100	MHz
h2f_user1_clk	100	100	100	100	MHz
h2f_user2_clk	200	200	200	160	MHz

HPS PLL Specifications

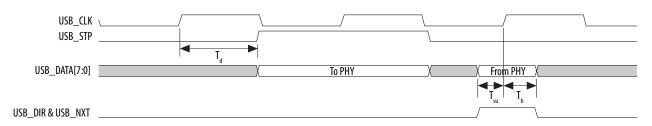
HPS PLL VCO Frequency Range

Table 1-49: HPS PLL VCO Frequency Range for Arria V Devices

Description	Speed Grade	Minimum	Maximum	Unit
	-C5, -I5, -C6	320	1,600	MHz
VCO range	-C4	320	1,850	MHz
	-I3	320	2,100	MHz

HPS PLL Input Clock Range

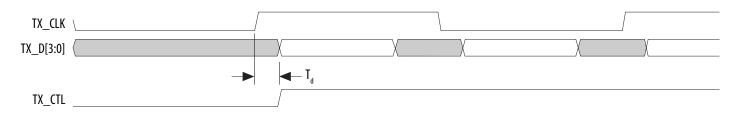
The HPS PLL input clock range is 10 – 50 MHz. This clock range applies to both HPS_CLK1 and HPS_CLK2 inputs.


Related Information

Clock Select, Booting and Configuration chapter

Provides more information about the clock range for different values of clock select (CSEL).

Figure 1-12: USB Timing Diagram



Ethernet Media Access Controller (EMAC) Timing Characteristics

Table 1-56: Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
T _{clk} (1000Base-T)	TX_CLK clock period	_	8	_	ns
T _{clk} (100Base-T)	TX_CLK clock period	—	40		ns
T _{clk} (10Base-T)	TX_CLK clock period	_	400		ns
T _{dutycycle}	TX_CLK duty cycle	45		55	%
T _d	TX_CLK to TXD/TX_CTL output data delay	-0.85		0.15	ns

Figure 1-13: RGMII TX Timing Diagram

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

1-88 Glossary			AV-5100 2017.02.1
Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge delay	50	ps
D _{OUTBUF}		100	ps
		150	ps

Glossary

Table 1-78: Glossary

Term	Definition
Differential I/O standards	Receiver Input Waveforms
	Single-Ended Waveform V_{ID} Positive Channel (p) = V_{IH} V_{CM} Negative Channel (n) = V_{IL} Ground Ground
	Differential Waveform V_{ID} V_{ID} V_{ID} v_{ID}

1-96 Document Revision History

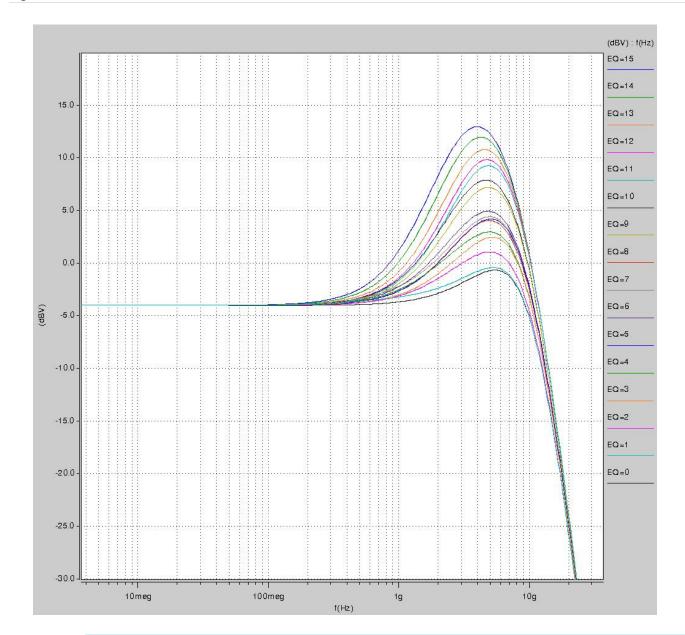
Date	Version	Changes
June 2015	2015.06.16	• Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		True mini-LVDS output standard: data rates of up to 400 Mbps
		 Added note in the condition for Transmitter—Emulated Differential I/O Standards f_{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		Updated T _h location in I ² C Timing Diagram.
		Updared T _{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t _{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		• FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

Symbol	Description	Conditions	Calibration Ac	curacy	Unit
Symbol	Description	Conditions	C3, I3L	C4, I4	Onic
$25-\Omega R_S$	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	$V_{CCIO} = 1.2 V$	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration ($20-\Omega$, $30-\Omega$, $40-\Omega$, $60-\Omega$, and $120-\Omega$ setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	%
60- Ω and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	V _{CCIO} = 1.2	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%

Table 2-11: OCT Without Calibration Resistance Tolerance Specifications for Arria V GZ Devices

Symbol Description	Description	Conditions	Resistance	- Unit	
	Conditions	C3, I3L	C4, I4		
, 3	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±40	±40	%

Typical VOD Settings


The tolerance is +/-20% for all VOD settings except for settings 2 and below.								
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)				
	0 (166)	0	32	640				
	1 ⁽¹⁶⁶⁾	20	33	660				
	2(166)	40	34	680				
	3(166)	60	35	700				
	4 ⁽¹⁶⁶⁾	80	36	720				
	5 ⁽¹⁶⁶⁾	100	37	740				
	6	120	38	760				
$ m V_{OD}$ differential peak to peak typical	7	140	39	780				
	8	160	40	800				
	9	180	41	820				
	10	200	42	840				
	11	220	43	860				
	12	240	44	880				
	13	260	45	900				
	14	280	46	920				

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)

Altera Corporation

t_{ARESET}

Symbol	Parameter	Min	Тур	Max	Unit
f _{OUT} ⁽¹⁶⁹⁾	Output frequency for an internal global or regional clock (C3, I3L speed grade)	—	—	650	MHz
IOUT	Output frequency for an internal global or regional clock (C4, I4 speed grade)	—		580	MHz
f _{OUT_EXT} ⁽¹⁶⁹⁾	Output frequency for an external clock output (C3, I3L speed grade)	_	_	667	MHz
IOUT_EXT	Output frequency for an external clock output (C4, I4 speed grade)	_	_	533	MHz
toutduty	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
f _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/ delays)	_	_	1	ms
	PLL closed-loop low bandwidth	_	0.3		MHz
f_{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (170)	_	4		MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps

10

_

Minimum pulse width on the areset signal

ns

 $^{^{(169)}}$ This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

⁽¹⁷⁰⁾ High bandwidth PLL settings are not supported in external feedback mode.

Memory	Mode	Resou	rces Used	Performance				- Unit
Memory	imoue	ALUTs	Memory	C3	C4	I3L	14	
	Single-port, all supported widths	0	1	650	550	500	450	MHz
	Simple dual-port, all supported widths	0	1	650	550	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz
	True dual port, all supported widths	0	1	650	550	500	450	MHz
	ROM, all supported widths	0	1	650	550	500	450	MHz

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance			< 1	Ω

Symbol	Conditions		C3, I3L			C4, I4		Unit	
3911.001	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic	
True Differential I/O Standards - f _{HSDRDPA}	SERDES factor $J = 3$ to 10 (192), (193), (194), (195), (196), (197)	150	_	1250	150		1050	Mbps	
	SERDES factor $J \ge 4$ LVDS RX with DPA (193), (195), (196), (197)	150		1600	150		1250	Mbps	
(data rate)	SERDES factor J = 2, uses DDR Registers	(198)	_	(199)	(198)	_	(199)	Mbps	
	SERDES factor J = 1, uses SDR Register	(198)		(199)	(198)		(199)	Mbps	
	SERDES factor $J = 3$ to 10	(198)	—	(200)	(198)	_	(200)	Mbps	
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(198)	—	(199)	(198)		(199)	Mbps	
	SERDES factor J = 1, uses SDR Register	(198)	_	(199)	(198)	_	(199)	Mbps	

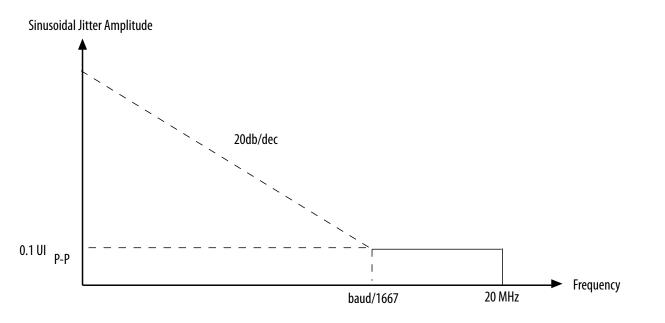
 $^{(192)}$ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁹³⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.

⁽¹⁹⁴⁾ Arria V GZ LVDS serialization and de-serialization factor needs to be x4 and above.

⁽¹⁹⁵⁾ Requires package skew compensation with PCB trace length.

⁽¹⁹⁶⁾ Do not mix single-ended I/O buffer within LVDS I/O bank.


⁽¹⁹⁷⁾ Chip-to-chip communication only with a maximum load of 5 pF.

⁽¹⁹⁸⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

⁽¹⁹⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

⁽²⁰⁰⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Non DPA Mode High-Speed I/O Specifications

Table 2-46: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L				Unit		
	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
Sampling Window	_		_	300			300	ps

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit
4	120	128	ps

Memory Output Clock Jitter Specifications

Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

Clock Network	Parameter	Symbol	С3,	I3L	C4	Unit	
CIOCK NELWOIK	ralameter	Symbol	Min	Мах	Min	Мах	Onit
	Clock period jitter	t _{JIT(per)}	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	-90	90	-90	90	ps
	Clock period jitter	t _{JIT(per)}	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-60	60	-70	70	ps
	Duty cycle jitter	t _{JIT(duty)}	-45	45	-56	56	ps

Related Information

- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reconfiguration input for the ALTREMOTE_UPDATE IP core, refer to the "User Watchdog Timer" section.
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reset_timer input for the ALTREMOTE_UPDATE IP core, refer to the "Remote System Upgrade State Machine" section.

User Watchdog Internal Oscillator Frequency Specification

Table 2-65: User Watchdog Internal Oscillator Frequency Specifications

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete placeand-route.

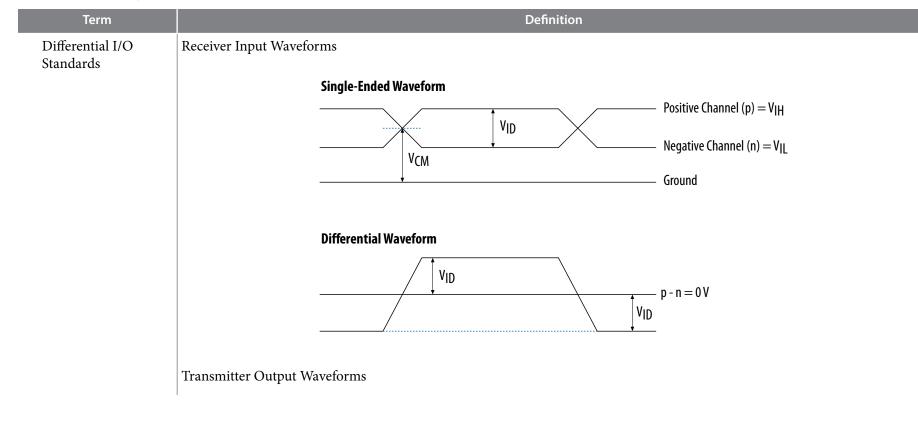
Related Information

Arria V Devices Documentation page

For the Excel-based I/O Timing spreadsheet

Arria V GZ Device Datasheet

Altera Corporation



⁽²²⁶⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²⁷⁾ This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Glossary

Table 2-68: Glossary

Term	Definition
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—clock boost factor

Document Revision History

Date	Version	Changes
February 2017	2017.02.10	• Changed the minimum value for t _{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1" table.
		 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1" table.
		• Changed the minimum value for t _{CD2UMC} in the "AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices" table.
		• Changed the minimum value for t _{CD2UMC} in the "PS Timing Parameters for Arria V GZ Devices" table.
		 Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices" table.

