

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agtmc7g3f31i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Core voltage power supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V CC	Core voltage power suppry	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
V _{CCPGM}		3.3 V	3.135	3.3	3.465	V
	Configuration pine power supply	3.0 V	2.85	3.0	3.15	V
	Configuration phils power supply	2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	—	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCL_GXBL}	GX and SX speed grades—clock network power (left side)	1 08/1 12	1 1/1 15(6)	1 14/1 18	V
V _{CCL_GXBR}	GX and SX speed grades—clock network power (right side)	1.00/ 1.12		1.1 1/ 1.10	v
V _{CCL_GXBL}	GT and ST speed grades—clock network power (left side)	117	1 20	1 22	V
V _{CCL_GXBR}	GT and ST speed grades—clock network power (right side)	1.17	1.20	1.25	v

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

HPS Power Supply Operating Conditions

Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS core	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC_HPS}	voltage and periphery circuitry power supply	-I3	1.12	1.15	1.18	V

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Pin Leakage Current

Table 1-6: I/O Pin Leakage Current for Arria V Devices

Symbol	Description	Condition	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ

Bus Hold Specifications

Table 1-7: Bus Hold Parameters for Arria V Devices

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

			V _{ccio} (V)												
Parameter	Symbol	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max)	8	_	12		30	_	50		70		70		μΑ
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min)	-8	_	-12		-30	_	-50		-70	_	-70		μΑ
Bus-hold, low, overdrive current	I _{ODL}	$\begin{array}{c} 0 \ \mathrm{V} < \mathrm{V_{IN}} \\ < \mathrm{V_{CCIO}} \end{array}$		125	_	175	_	200		300		500	_	500	μΑ
Bus-hold, high, overdrive current	I _{ODH}	0 V <v<sub>IN <v<sub>CCIO</v<sub></v<sub>	_	-125	_	-175	_	-200		-300	_	-500	_	-500	μΑ

Arria V GX, GT, SX, and ST Device Datasheet

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard	V _{CCIO} (V)				V _{REF} (V)		V _{TT} (V)			
i/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	—	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_			

Tuble 1 15, Single Ended SSTE, 15TE, and 15OE / O hererence voltage Specifications for Anna v Devices

Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

Sumbol/Description	Condition	Transc	eiver Speed G	irade 4	Transc	Unit		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz
Transceiver Reconfigura- tion Controller IP (mgmt_ clk_clk) clock frequency	_	75	_	125	75	_	125	MHz

Table 1-22: Receiver Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transc	llnit		
symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards	1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS							
Data rate ⁽²⁸⁾		611	—	6553.6	611	—	3125	Mbps
Absolute V_{MAX} for a receiver pin ⁽²⁹⁾	_		_	1.2		—	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_		-0.4	—	—	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_		1.6		_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2		_	2.2	V

 ⁽²⁸⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
⁽²⁹⁾ The device cannot tolerate prolonged operation at this absolute maximum.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st								
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	_	10.2	6.09	5.01	4.23	3.61	_	dB
12	_	11.56	6.74	5.51	4.68	3.97	_	dB
13	_	12.9	7.44	6.1	5.12	4.36	_	dB
14	_	14.44	8.12	6.64	5.57	4.76	_	dB
15	_	_	8.87	7.21	6.06	5.14	_	dB

Arria V GX, GT, SX, and ST Device Datasheet

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Momory	Mada	Resources Used			Unit		
Memory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	ont
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	_		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Daramotor	Clock Notwork	Symbol	-I3,	-C4	–15,	-C5	_(6	Unit
Falametei		Symbol	Min	Max	Min	Max	Min	Max	onit
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	63		90		94		ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for $R_{\rm S}$ OCT/R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5		ns

Table 1-57: RGMII RX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Unit
T _{clk} (1000Base-T)	RX_CLK clock period		8	ns
T _{clk} (100Base-T)	RX_CLK clock period		40	ns
T _{clk} (10Base-T)	RX_CLK clock period		400	ns
T _{su}	RX_D/RX_CTL setup time	1		ns
T _h	RX_D/RX_CTL hold time	1		ns

Figure 1-14: RGMII RX Timing Diagram

Table 1-58: Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	MDC clock period	—	400	_	ns
T _d	MDC to MDIO output data delay	10		20	ns
T _s	Setup time for MDIO data	10	_		ns
T _h	Hold time for MDIO data	0			ns

Hot Socketing

Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 µA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹²⁴⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Internal Weak Pull-Up Resistor

Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

Symbol	Description	V _{CCIO} Conditions (V) ⁽¹²⁵⁾	Value ⁽¹²⁶⁾	Unit
		3.0 ±5%	25	kΩ
		Description V_{CCIO} Conditions (V) (125)Value (126)Unit A $3.0 \pm 5\%$ 25 $k \Omega$ $2.5 \pm 5\%$ 25 $k \Omega$ $2.5 \pm 5\%$ 25 $k \Omega$ $1.8 \pm 5\%$ 25 $k \Omega$ $1.5 \pm 5\%$ 25 $k \Omega$ $1.35 \pm 5\%$ 25 $k \Omega$ $1.25 \pm 5\%$ 25 $k \Omega$ $1.25 \pm 5\%$ 25 $k \Omega$ $1.25 \pm 5\%$ 25 $k \Omega$	kΩ	
	Value of the I/O pin pull-up resistor	1.8 ±5%	25	kΩ
R _{PU}	before and during configuration, as well as user mode if you enable the	1.5 ±5%	25	kΩ
	programmable pull-up resistor option.	1.35 ±5%	Value (126) Unit 25 k Ω 25 k Ω	kΩ
		1.25 ±5%		kΩ
		1.2 ±5%	25	kΩ

⁽¹²⁴⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(125)}}$ The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

 $^{^{(126)}}$ These specifications are valid with a ±10% tolerance to cover changes over PVT.

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	—			1.6	—	_	1.6	V
Maximum peak-to-peak differential	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$			1.8	—		1.8	V
device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$			ver Speed Grade 2 Transceiver Speed Grade 3 U Typ Max Min Typ Max U - 1.6 - - 1.6 - - 1.6 - 1.8 - - 1.8 - - 1.8 - - 2.4 - - 2.4 - - 2.4 - - 2.4 - - 85 - - r 5 \pm 30% - - 85 - - r 100 - - 100 - - 100 - \pm 30% - - 120 - - 120 - - \pm 30% - - 150 - - 150 - -	V			
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85		_	85	_	—	mV
	85– Ω setting		85 ± 30%	—	—	85 ± 30%	_	Ω
Differential on-chip termination	100– Ω setting		100 ± 30%	—	—	100 ± 30%	_	Ω
resistors	Symbol/Description Conditions Transceiver Speed Grade 2 Transceiver Speed Grade 3 Min Typ Max Min Typ Max um peak-to-peak differential oltage V _{ID} (diff p-p) before configuration — — — — 1.6 — — 1.6 — — 1.6 … … 1.6 … … 1.6 … … 1.6 … … 1.6 … … 1.6 … … … 1.6 … … … 1.6 … … … 1.6 … <td< td=""><td>—</td><td>Ω</td></td<>	—	Ω					
	150– Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.								
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)				
	0 (166)	0	32	640				
	1(166)	20	33	660				
	$\begin{array}{ c c c c c c c c c } 2^{(166)} & 40 & 34 \\\hline 3^{(166)} & 60 & 35 \\\hline 4^{(166)} & 80 & 36 \\\hline 5^{(166)} & 100 & 37 \\\hline 6 & 120 & 38 \\\hline 7 & 140 & 39 \\\hline \end{array}$	34	680					
	3(166)	Setting V _{OD} Value (mV) V _{OD} Setting V _{OD} Value 0 ⁽¹⁶⁶⁾ 0 32 4 1 ⁽¹⁶⁶⁾ 20 33 4 2 ⁽¹⁶⁶⁾ 40 34 4 3 ⁽¹⁶⁶⁾ 60 35 4 3 ⁽¹⁶⁶⁾ 60 35 4 1 ⁽¹⁶⁶⁾ 80 36 4 5 ⁽¹⁶⁶⁾ 100 37 4 6 120 38 4 7 140 39 4 10 200 42 4 11 220 43 4 13 260 45 4	700					
	4 ⁽¹⁶⁶⁾	80	36	720				
	5 ⁽¹⁶⁶⁾	100	37	740				
	6	120	38	760				
V_{OD} differential peak to peak typical	7	140	39	780				
	8	Vod Value (mV) Vod Setting Vod Value (mV) 0 (166) 0 32 1 1 (166) 20 33 2 2 (166) 40 34 34 3 (166) 60 35 36 4 (166) 80 36 36 5 (166) 100 37 6 7 140 39 38 7 140 39 36 9 180 41 10 10 200 42 11 12 240 44 13 260 45 14 280 46 46 46	800					
	9	180	41	820				
	10	200	42	840				
	11	220	43	860				
12	240	44	880					
	13	260	45	900				
	14	280	46	920				

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R_S/R_T calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Table 2-55: DCLK-to-DATA[] Ratio for Arria V GZ Devices

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA[] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Arria V GZ devices use the additional clock cycles to decrypt and decompress the configuration data.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
FPP ×8	Disabled	Disabled	1
	Disabled	Enabled	1
	Enabled	Disabled	2
	Enabled	Enabled	2
FPP ×16	Disabled	Disabled	1
	Disabled	Enabled	2
	Enabled	Disabled	4
	Enabled	Enabled	4
FPP ×32	Disabled	Disabled	1
	Disabled	Enabled	4
	Enabled	Disabled	8
	Enabled	Enabled	8

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$	—	_
		DCLK period		
t _{CD2UM} C	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (209)		_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57 ٠
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Arria V GZ Device Datasheet

⁽²⁰⁸⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽²⁰⁹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Glossary

Table 2-68: Glossary

