E·XFL

Intel - 5AGXBA5D4F27C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxba5d4f27c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V	I/O buffers power supply	1.8 V	1.71	1.8	1.89	V
V _{CCIO}	1/O builets power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
VI	DC input voltage	—	-0.5		3.6	V
V _O	Output voltage	—	0		V _{CCIO}	V
	Operating junction temperature	Commercial	0		85	°C
TJ		Industrial	-40		100	°C
t (4)	Power supply ramp time	Standard POR	200 µs		100 ms	_
t _{RAMP} ⁽⁴⁾		Fast POR	200 µs		4 ms	

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁴⁾ This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Figure 1-1: Equation for OCT Variation Without Recalibration

$$R_{OCT} = R_{SCAL} \left(1 + \left(\frac{dR}{dT} \times \Delta T \right) \pm \left(\frac{dR}{dV} \times \Delta V \right) \right)$$

The definitions for the equation are as follows:

- The R_{OCT} value calculated shows the range of OCT resistance with the variation of temperature and V_{CCIO}.
- R_{SCAL} is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

OCT Variation after Power-Up Calibration

Table 1-10: OCT Variation after Power-Up Calibration for Arria V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0°C to 85°C.

Symbol	Description	V _{CCIO} (V)	Value	Unit
		3.0	0.100	
		2.5	0.100	
	OCT variation with voltage without recalibration	1.8	0.100	
dR/dV		1.5	0.100	%/mV
		1.35	0.150	
		1.25	0.150	
		1.2	0.150	

AV-51002 2017.02.10

I/O Standard Specifications

Tables in this section list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Arria V devices.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

Single-Ended I/O Standards

I/O Standard		V _{CCIO} (V)			V _{IL} (V)	V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹³⁾	I _{OH} ⁽¹³⁾ (mA)
I/O Stanuaru	Min	Тур	Max	Min	Мах	Min	Мах	Мах	Min	(mA)	IOH, (IIIA)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	0.1	-0.1
3.0-V PCI	2.85	3	3.15	_	$0.3 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15		$0.35 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{CCIO} + 0.3$	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 1-14: Single-Ended I/O Standards for Arria V Devices

(13) To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Symbol/Description	Condition	Т	ransceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Мах	Onit
Data rate (10-Gbps transceiver) ⁽⁴⁴⁾	_	0.611	—	10.3125	Gbps
Absolute V_{MAX} for a receiver pin ⁽⁴⁵⁾	_		_	1.2	V
Absolute $\mathrm{V}_{\mathrm{MIN}}$ for a receiver pin	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	—	—	_	1.6	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration	_			2.2	V
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁶⁾	_	100			mV
V _{ICM} (AC coupled)	_	_	750 ⁽⁴⁷⁾ /800		mV
V _{ICM} (DC coupled)	$\leq 3.2 \mathrm{Gbps}^{(48)}$	670	700	730	mV
	85- Ω setting		85		Ω
Differential on-chip termination	100-Ω setting		100		Ω
resistors	120-Ω setting		120		Ω
	150-Ω setting		150		Ω
t _{LTR} ⁽⁴⁹⁾	_	_	_	10	μs
t _{LTD} ⁽⁵⁰⁾	_	4			μs

⁽⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

⁽⁴⁶⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

 $^{^{(47)}}$ The AC coupled $V_{\rm ICM}$ is 750 mV for PCIe mode only.

⁽⁴⁸⁾ For standard protocol compliance, use AC coupling.

 $^{^{(49)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

⁽⁵⁰⁾ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

Symbol/Description	Condition	Т	Transceiver Speed Grade 3					
Symbol/Description	Min Typ		Тур	Мах	Unit			
t _{LTD_manual} ⁽⁵¹⁾	—	4	—	_	μs			
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	μs					
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100	ppm					
Run length	—	_	_	200	UI			
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gai and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response a Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.						

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit							
	Condition	Min	Тур	Max						
Supported I/O standards		1.5 V PCML								
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps					
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps					
V _{OCM} (AC coupled)	—		650		mV					
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV					

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

1-44	PLL Specifications
------	--------------------

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	5	_	800 ⁽⁶¹⁾	MHz
f _{IN}	Input clock frequency	-4 speed grade	5	_	800 ⁽⁶¹⁾	MHz
IIN	input clock frequency	-5 speed grade	5	_	750 ⁽⁶¹⁾	MHz
		-6 speed grade	5	_	625 ⁽⁶¹⁾	MHz
f _{INPFD}	Integer input clock frequency to the phase frequency detector (PFD)		5	_	325	MHz
f _{FINPFD}	Fractional input clock frequency to the PFD	_	50	_	160	MHz
		-3 speed grade	600	_	1600	MHz
f _{VCO} ⁽⁶²⁾	PLL voltage-controlled oscillator	-4 speed grade	600	_	1600	MHz
IVCO	(VCO) operating range	-5 speed grade	600	_	1600	MHz
		-6 speed grade	600	_	1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	_	40	_	60	%
		-3 speed grade	_	_	500 ⁽⁶³⁾	MHz
f	Output frequency for internal global or	-4 speed grade	_	_	500 ⁽⁶³⁾	MHz
f _{OUT}	regional clock	-5 speed grade	_	-	500 ⁽⁶³⁾	MHz
		-6 speed grade	_	_	400 ⁽⁶³⁾	MHz

⁽⁶¹⁾ This specification is limited in the Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

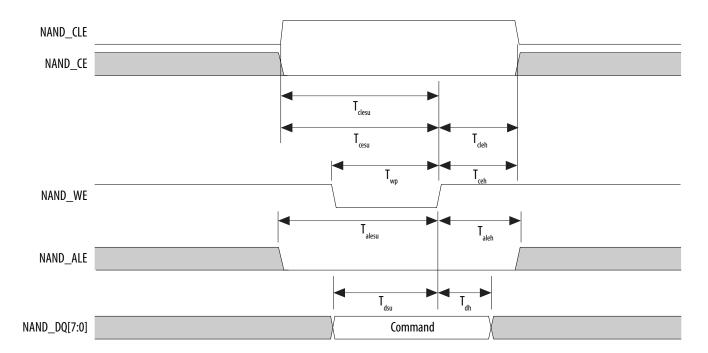
⁽⁶²⁾ The VCO frequency reported by the Quartus Prime software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽⁶³⁾ This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.

AV-51002 2017.02.10

Symbol	Condition		-I3, -C4			-l5, -C5			-C6		Unit
Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SERDES factor J ≥ 8 ⁽⁷⁶⁾⁽⁷⁸⁾ , LVDS TX with RX DPA	(77)		1600	(77)		1500	(77)	_	1250	Mbps
	SERDES factor J = 1 to 2, Uses DDR Registers	(77)		(79)	(77)		(79)	(77)	_	(79)	Mbps
Emulated Differential I/ O Standards with Three External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		945	(77)		945	(77)		945	Mbps
Emulated Differential I/ O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		200	(77)		200	(77)		200	Mbps
t _{x Jitter} -True Differential I/O Standards	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps			160			160		_	160	ps
	Total Jitter for Data Rate < 600 Mbps			0.1	_	_	0.1	—	_	0.1	UI

 $^{^{(78)}}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface.


⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean.

⁽⁸⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

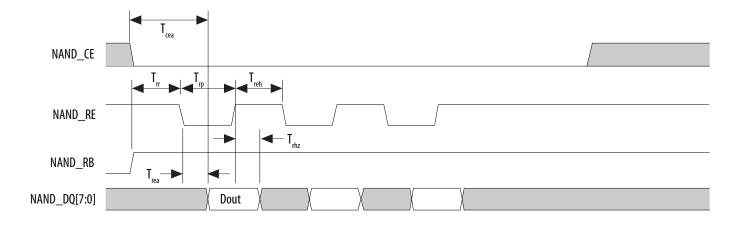

Symbol	Description	Min	Мах	Unit
T _{dh} ⁽⁸⁹⁾	Data to write enable hold time	5	—	ns
T _{cea}	Chip enable to data access time		25	ns
T _{rea}	Read enable to data access time		16	ns
T _{rhz}	Read enable to data high impedance		100	ns
T _{rr}	Ready to read enable low	20		ns

Figure 1-17: NAND Command Latch Timing Diagram

Figure 1-20: NAND Data Read Timing Diagram

ARM Trace Timing Characteristics

Table 1-61: ARM Trace Timing Requirements for Arria V Devices

Most debugging tools have a mechanism to adjust the capture point of trace data.

Description	Min	Мах	Unit
CLK clock period	12.5	—	ns
CLK maximum duty cycle	45	55	%
CLK to D0 –D7 output data delay	-1	1	ns

UART Interface

The maximum UART baud rate is 6.25 megasymbols per second.

GPIO Interface

The minimum detectable general-purpose I/O (GPIO) pulse width is 2 µs. The pulse width is based on a debounce clock frequency of 1 MHz.

HPS JTAG Timing Specifications

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹⁰⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹⁰⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹⁰⁾	ns

Table 1-62: HPS JTAG Timing Parameters and Values for Arria V Devices

Configuration Specifications

This section provides configuration specifications and timing for Arria V devices.

POR Specifications

Table 1-63: Fast and Standard POR Delay Specification for Arria V Devices

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽⁹¹⁾	ms

⁽⁹⁰⁾ A 1-ns adder is required for each V_{CCIO_HPS} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO_HPS} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

⁽⁹¹⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

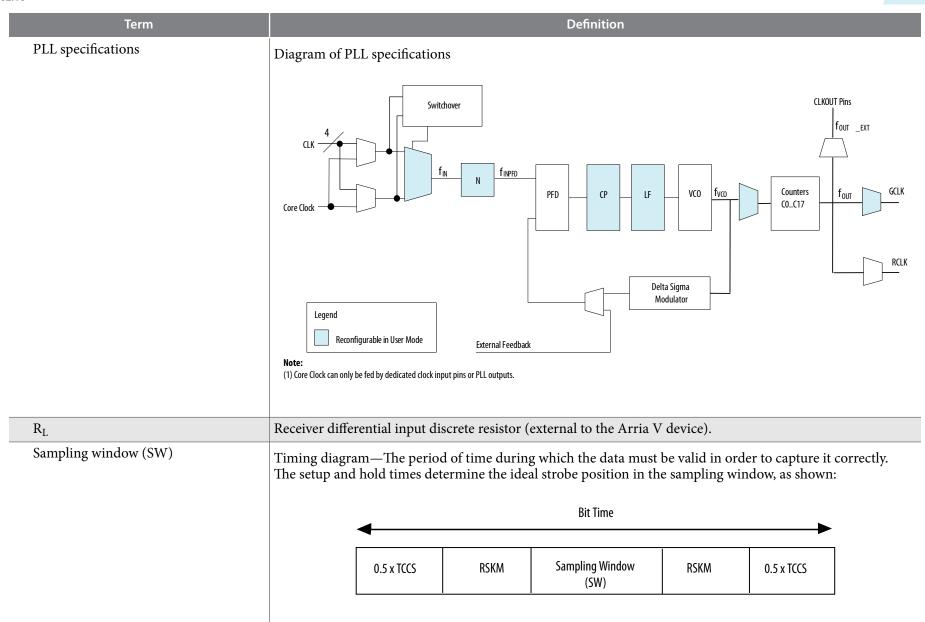
Programmable IOE Delay

Parameter ⁽¹¹² Available Minimum			Fast Model		Slow Model				- Unit	
)	Settings	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	- I 3	-15	Onic
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices


This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-96 Document Revision History

Date	Version	Changes
June 2015	2015.06.16	• Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		True mini-LVDS output standard: data rates of up to 400 Mbps
		 Added note in the condition for Transmitter—Emulated Differential I/O Standards f_{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		Updated T _h location in I ² C Timing Diagram.
		Updared T _{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t _{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		 FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

Memory	Mode	Resources Used		Performance				Unit	
wentory	imoue	ALUTs	Memory	C3	C4	I3L	14	Unit	
	Single-port, all supported widths	0	1	650	550	500	450	MHz	
	Simple dual-port, all supported widths	0	1	650	550	500	450	MHz	
option	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz	
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz	
S p	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz	
	True dual port, all supported widths	0	1	650	550	500	450	MHz	
	ROM, all supported widths	0	1	650	550	500	450	MHz	

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance			< 1	Ω

Related Information

- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reconfiguration input for the ALTREMOTE_UPDATE IP core, refer to the "User Watchdog Timer" section.
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reset_timer input for the ALTREMOTE_UPDATE IP core, refer to the "Remote System Upgrade State Machine" section.

User Watchdog Internal Oscillator Frequency Specification

Table 2-65: User Watchdog Internal Oscillator Frequency Specifications

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete placeand-route.

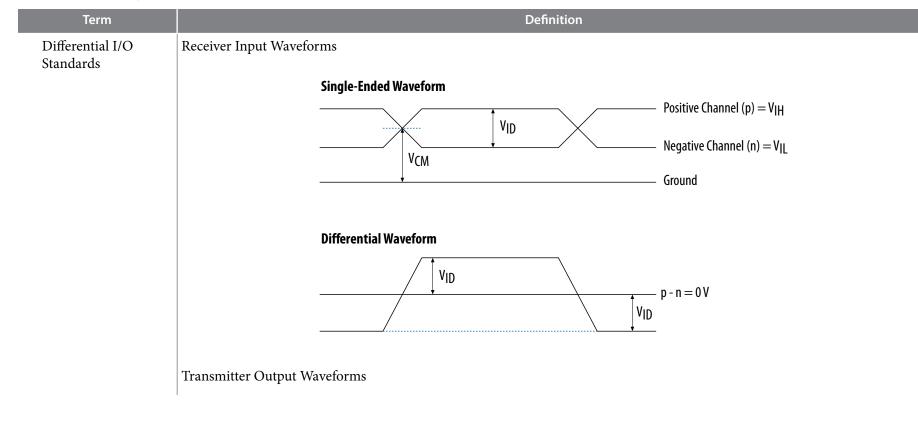
Related Information

Arria V Devices Documentation page

For the Excel-based I/O Timing spreadsheet

Arria V GZ Device Datasheet

Altera Corporation



⁽²²⁶⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²⁷⁾ This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Glossary

Table 2-68: Glossary

Term	Definition
t _C	High-speed receiver and transmitter input and output clock period.
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including t _{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).
t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80-20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage

Altera Corporation

