E·XFL

Intel - 5AGXBA5D4F27I5N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxba5d4f27i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

I/O Standard	V _{II}	_{-(DC)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
i/O Stanuaru	Min	Мах	Min	Мах	Max	Min	Мах	Min	(mA)	IOH, (IIIIA)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	$V_{CCIO} + 0.3$	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	$V_{CCIO} + 0.3$	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	$V_{CCIO} + 0.3$	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	$V_{CCIO} + 0.3$	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I	—	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	8	-8
SSTL-15 Class II	—	V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	16	-16
SSTL-135	—	V_{REF} – 0.09	$V_{REF} + 0.09$		V _{REF} – 0.16	$V_{REF} + 0.16$	$0.2 \times V_{CCIO}$	$0.8 \times V_{\rm CCIO}$		—
SSTL-125	—	$V_{REF} - 0.85$	$V_{REF} + 0.85$		V _{REF} – 0.15	$V_{REF} + 0.15$	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	—	—
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

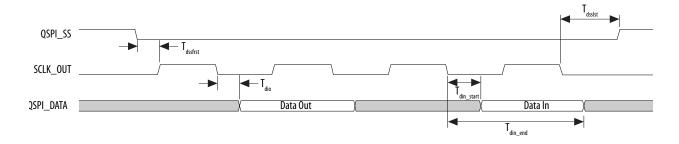
Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)		
	PCIe Gen1	2,500		
PCIe	PCIe Gen2	5,000		
	PCIe Cable	2,500		
XAUI	XAUI 2135	3,125		
	SRIO 1250 SR	1,250		
	SRIO 1250 LR	1,250		
	SRIO 2500 SR	2,500 2,500		
	SRIO 2500 LR			
	SRIO 3125 SR	3,125		
Serial RapidIO [®] (SRIO)	SRIO 3125 LR	3,125		
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000		
	SRIO 5000 MR	5,000		
	SRIO 5000 LR	5,000		
	SRIO_6250_SR	6,250		
	SRIO_6250_MR	6,250		
	SRIO_6250_LR	6,250		

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
OBSAI	OBSAI 1536	1,536
OBSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

Symbol	Condition	-I3, -C4		–I5, –C5		-C6			Unit		
Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
t _{x Jitter} -Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps	_	-	260		_	300	_	_	350	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—	_	0.16		_	0.18	_		0.21	UI
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	_			0.15			0.15			0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards ⁽⁸²⁾	_	_	160			180	_		200	ps
t _{RISE} and t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Network	_		250			250			300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network			500		_	500			500	ps



 $^{^{(82)}\,}$ This applies to default pre-emphasis and V_{OD} settings only.

Symbol	Description	Min	Тур	Max	Unit
T _{din_end}	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$		_	ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

Related Information

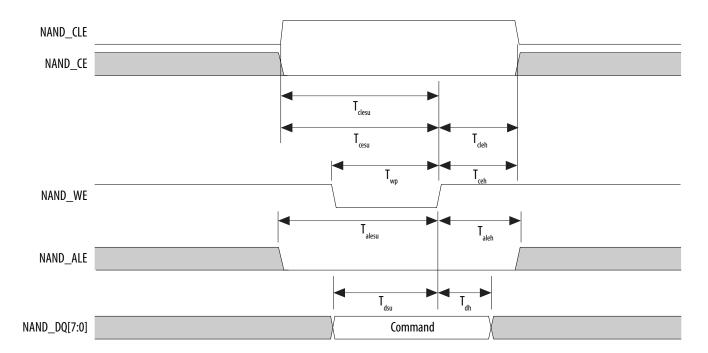
Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

Table 1-52: SPI Master Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.


Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	_	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)		ns

 $^{^{(85)}}$ R_{delay} is set by programming the register <code>qspiregs.rddatacap</code>. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

Symbol	Description	Min	Мах	Unit
T _{dh} ⁽⁸⁹⁾	Data to write enable hold time	5	—	ns
T _{cea}	Chip enable to data access time		25	ns
T _{rea}	Read enable to data access time		16	ns
T _{rhz}	Read enable to data high impedance		100	ns
T _{rr}	Ready to read enable low	20		ns

Figure 1-17: NAND Command Latch Timing Diagram

FPP Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP $\times 16$ where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 1-65: DCLK-to-DATA[] Ratio for Arria V Devices

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	Off	Off	1
FPP (8-bit wide)	On	Off	1
rrr (o-on wide)	Off	On	2
	On	On	2
	Off	Off	1
FPP (16-bit wide)	On	Off	2
FFF (10-bit wide)	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLKto-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria V Devices table.

Table 1-66: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

FPP Configuration Timing when DCLK-to-DATA[] >1

Table 1-67: FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	—	600	ns
t _{CF2ST0}	nconfig low to nstatus low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁸⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1506 ⁽⁹⁹⁾	μs
t _{CF2CK} ⁽¹⁰⁰⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁰⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	$N - 1/f_{\rm DCLK}^{(101)}$	_	s
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰²⁾	175	437	μs

⁽⁹⁸⁾ This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁹⁾ This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

 $^{^{(100)}}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰¹⁾ N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

⁽¹⁰²⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Related Information

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

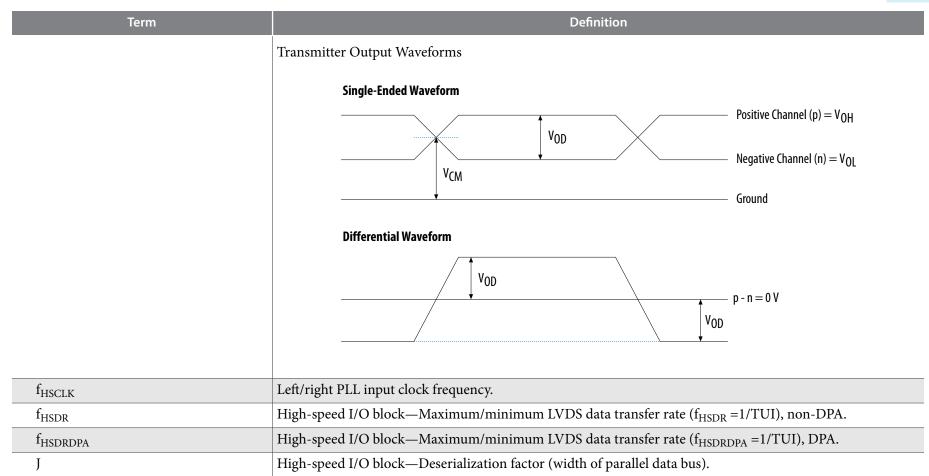
DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
Bellk frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing


Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.

⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V _{CCPD} ⁽¹¹⁶	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
)	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply	_	1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA} _	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD} FPLL	PLL digital voltage regulator power supply	_	1.45	1.5	1.55	V
V _{CCBAT} (117	Battery back-up power supply (For design security volatile key register)	_	1.2	—	3.0	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.
Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁶⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.

⁽¹¹⁷⁾ If you do not use the design security feature in Arria V GZ devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Arria V GZ power-on-reset (POR) circuitry monitors V_{CCBAT}. Arria V GZ devices do not exit POR if V_{CCBAT} is not powered up.

Symbol	Description	Conditions	Calibration Ac	curacy	Unit
Symbol	Description	Conditions	C3, I3L	C4, I4	Onic
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	$V_{CCIO} = 1.2 V$	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	%
60- Ω and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%

Table 2-11: OCT Without Calibration Resistance Tolerance Specifications for Arria V GZ Devices

Symbol	Description	Conditions	Resistance	Unit		
Symbol	Symbol Description		C3, I3L	C4, I4	Onic	
- 8	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±40	±40	%	

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard		V _{CCIO} (V)		V _{SWIN}	_{G(DC)} (V)		$V_{X(AC)}(V)$			V _{SWING(AC)} (V)
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175		V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	—	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)			V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68	_	0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit		
Reference Clock										
Supported I/O Standards	Dedicated reference clock pin									
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS								
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz		
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz		

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} ⁽¹⁵³⁾	_	1	_		1	_		μs
t _{pll_lock} ⁽¹⁵⁴⁾	_		—	10	_		10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

Altera Corporation

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width. (153)

⁽¹⁵⁴⁾ $t_{\text{pll} \text{ lock}}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description		Min	Тур	Max	Min	Тур	Мах	
	VCO post-divider L = 2	8000		12500	8000	_	10312.5	Mbps
Supported data rate range	L = 4	4000		6600	4000		6600	Mbps
	$L = 8^{(155)}$	2000		3300	2000	_	3300	Mbps
t _{pll_powerdown} ⁽¹⁵⁶⁾	_	1			1			μs
t _{pll_lock} ⁽¹⁵⁷⁾	_			10			10	μs

Related Information

- Arria V Device Overview For more information about device ordering codes.
- Transceiver Clocking in Arria V Devices For more information about clocking ATX PLLs.
- **Dynamic Reconfiguration in Arria V Devices** For more information about reconfiguring ATX PLLs.

Fractional PLL

Table 2-28: Fractional PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

⁽¹⁵⁵⁾ This clock can be further divided by central or local clock dividers making it possible to use ATX PLL for data rates < 1 Gbps. For more information about ATX PLLs, refer to the Transceiver Clocking in Arria V Devices chapter and the Dynamic Reconfiguration in Arria V Devices chapter.

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width.

⁽¹⁵⁷⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Мах	Unit
t _{INCCJ} ⁽¹⁷¹⁾ , ⁽¹⁷²⁾	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	_	0.15	UI (p-p)
'INCCJ , , , , , ,	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
(173)	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{OUTPJ_DC} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	_		17.5	mUI (p-p)
t _{foutpj_dc} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		$250^{(176)}, \\ 175^{(174)}$	ps (p-p)
4FOUTPJ_DC	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	—		$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
tournoon = c (173)	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		175	ps (p-p)
t _{OUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		17.5	mUI (p-p)
(173)	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

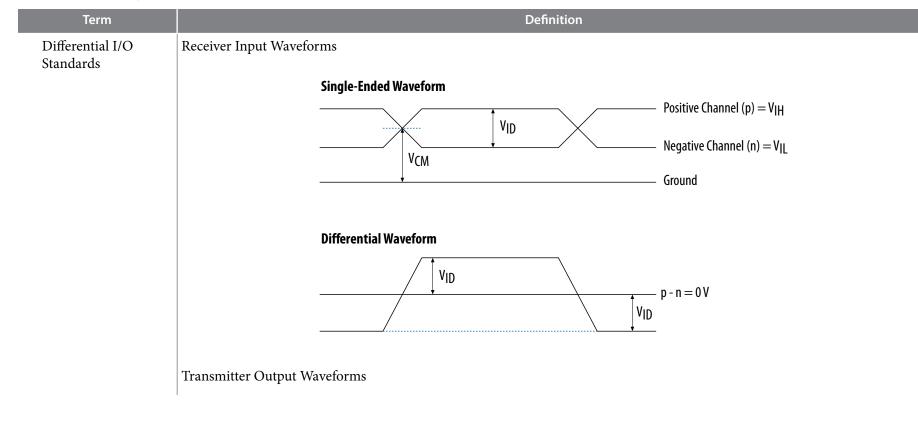
⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Мах	Min	Тур	Max	Onit
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J = 3 to 10 (182), (183)	(184)	_	1250	(184)	_	1050	Mbps
	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)		1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(184)		(189)	(184)		(189)	Mbps
	SERDES factor J = 1, uses SDR Register	(184)	_	(189)	(184)		(189)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 $^{(191)}$	(184)		840	(184)		840	Mbps

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.



⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Glossary

Table 2-68: Glossary

