

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxba7d4f31c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Coro voltago powor supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
• CC	Core voltage power suppry	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V CCP	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration pine power supply	3.0 V	2.85	3.0	3.15	V
V CCPGM	Configuration phils power supply	2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	—	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

Parameter	Symbol	Condition	V _{CCIO} (V)												
			1.2		1	1.5		1.8		2.5		.0	3.3		Unit
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

OCT Calibration Accuracy Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 1-8: OCT Calibration Accuracy Specifications for Arria V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (\/)	Ca	су	Unit	
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80- Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	$V_{CCIO} = 1.2$	±15	±15	±15	%
50-Ω R_T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R _T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V)				
i/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max		
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	V_{REF} + 0.04		
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$		
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	—		
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_		
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_		
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_				

Tuble 1 15, Single Ended SSTE, 15TE, and 15OE / O hererence voltage Specifications for Anna v Devices

1/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		$V_{IL(AC)}(V)$ $V_{IH(AC)}(V)$		V _{OL} (V) V _{OH} (V)		I _{OL} ⁽¹⁴⁾	امیا ⁽¹⁴⁾ (mA)	
i, o standard	Min	Max	Min	Мах	Max	Min	Мах	Min	(mA)		
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	_	$V_{REF} - 0.2$	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16	
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8	
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16	
HSUL-12	_	V _{REF} – 0.13	$V_{REF} + 0.13$	_	V _{REF} – 0.22	V _{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_	

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard	V _{CCIO} (V)			V _{SWING(DC)} (V)			$V_{X(AC)}(V)$	V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Мах	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	—	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	—	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
^L FOUTPJ_DC	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTCCJ_DC	output in integer PLL	F _{OUT} < 100 MHz	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁶⁷⁾	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
	output in fractional PLL	$F_{OUT} < 100 \text{ MHz}$	—	_	25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
(67)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
OUTPJ_IO	regular I/O in integer PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t (67)(70)	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
OUTCCJ_IO	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
t _{FOUTCCJ_IO} ⁽⁶⁷⁾⁽⁶⁸⁾⁽⁷⁰⁾	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t (67)(71)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$			175	ps (p-p)
CASC_OUTPJ_DC	in cascaded PLLs	F _{OUT} < 100 MHz			17.5	mUI (p-p)
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_			±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	_	8	24	32	bits
k _{VALUE}	Numerator of fraction	_	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency	$f_{INPFD} = 100 \text{ MHz}$	390625	5.96	0.023	Hz

Related Information

Memory Output Clock Jitter Specifications on page 1-57

Provides more information about the external memory interface clock output jitter specifications.

- Upstream PLL: 0.59 MHz ≤ Upstream PLL BW < 1 MHz
- Downstream PLL: Downstream PLL BW > 2 MHz

⁽⁷¹⁾ The cascaded PLL specification is only applicable with the following conditions:

Cumbal	Condition	–I3, –C4			-I5, -C5			-C6			11
Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{x Jitter} -Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps	_		260	_	_	300	_		350	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—		0.16	_	_	0.18	_		0.21	UI
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	_			0.15		_	0.15			0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards ⁽⁸²⁾			160	_	_	180			200	ps
t _{RISE} and t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Network		_	250		_	250		—	300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network	_		500	_		500	_		500	ps

 $^{^{(82)}\,}$ This applies to default pre-emphasis and V_{OD} settings only.

Figure 1-7: Timing Diagram for oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 1-47: Worst-Case DCD on Arria V I/O Pins

The output DCD cycle only applies to the I/O buffer. It does not cover the system DCD.

Symbol	-I3,	-C4	-C5, -I5		-C6		Unit	
	Min	Max	Min	Max	Min	Max	Ont	
Output Duty Cycle	45	55	45	55	45	55	%	

HPS Specifications

This section provides HPS specifications and timing for Arria V devices.

For HPS reset, the minimum reset pulse widths for the HPS cold and warm reset signals (HPS_nRST and HPS_nPOR) are six clock cycles of HPS_CLK1.

HPS PLL Input Jitter

Use the following equation to determine the maximum input jitter (peak-to-peak) the HPS PLLs can tolerate. The divide value (N) is the value programmed into the denominator field of the VCO register for each PLL. The PLL input reference clock is divided by this value. The range of the denominator is 1 to 64.

Maximum input jitter = Input clock period × Divide value (N) × 0.02

Table 1-50: Examples of Maximum Input Jitter

Input Reference Clock Period	Divide Value (N)	Maximum Jitter	Unit
40 ns	1	0.8	ns
40 ns	2	1.6	ns
40 ns	4	3.2	ns

Quad SPI Flash Timing Characteristics

Table 1-51: Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
F _{clk}	SCLK_OUT clock frequency (External clock)	_	_	108	MHz
T _{qspi_clk}	QSPI_CLK clock period (Internal reference clock)	2.32			ns
T _{dutycycle}	SCLK_OUT duty cycle	45		55	%
T _{dssfrst}	Output delay QSPI_SS valid before first clock edge		1/2 cycle of SCLK_OUT		ns
T _{dsslst}	Output delay QSPI_SS valid after last clock edge	-1		1	ns
T _{dio}	I/O data output delay	-1		1	ns
T _{din_start}	Input data valid start			$(2 + R_{delay}) \times T_{qspi_clk} - 7.52^{(85)}$	ns

1-62 SPI Timing Characteristics

Symbol	Description	Min	Max	Unit
T _h	SPI MISO hold time	1	_	ns
T _{dutycycle}	SPI_CLK duty cycle	45	55	%
T _{dssfrst}	Output delay SPI_SS valid before first clock edge	8		ns
T _{dsslst}	Output delay SPI_SS valid after last clock edge	8		ns
T _{dio}	Master-out slave-in (MOSI) output delay	-1	1	ns

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸⁶⁾ This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

Figure 1-9: SPI Master Timing Diagram

Table 1-53: SPI Slave Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	20	—	ns
T _s	MOSI Setup time	5	—	ns
T _h	MOSI Hold time	5	_	ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8	—	ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8	—	ns
T _d	MISO output delay		6	ns

Figure 1-11: SD/MMC Timing Diagram

Related Information

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	USB CLK clock period	—	16.67	_	ns
T _d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	_	11	ns
T _{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2			ns
T _h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1			ns

Figure 1-12: USB Timing Diagram

Ethernet Media Access Controller (EMAC) Timing Characteristics

Table 1-56: Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk} (1000Base-T)	TX_CLK clock period	_	8	_	ns
T _{clk} (100Base-T)	TX_CLK clock period	—	40		ns
T _{clk} (10Base-T)	TX_CLK clock period	—	400		ns
T _{dutycycle}	TX_CLK duty cycle	45		55	%
T _d	TX_CLK to TXD/TX_CTL output data delay	-0.85		0.15	ns

Figure 1-13: RGMII TX Timing Diagram

Altera Corporation

Sumbol	Description	Conditions	Calibration Ac	Unit	
Symbol	Description	Conditions	C3, I3L	C4, I4	Onit
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	$V_{CCIO} = 1.2 V$	±15	±15	%
50- Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω R _T	Internal parallel termination with calibration ($20-\Omega$, $30-\Omega$, $40-\Omega$, $60-\Omega$, and $120-\Omega$ setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	%
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%

Table 2-11: OCT Without Calibration Resistance Tolerance Specifications for Arria V GZ Devices

Symbol	Description	Conditions	Resistance	Unit	
Symbol	Description	Conditions	C3, I3L	C4, I4	Onit
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±40	±40	%

Hot Socketing

Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 µA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹²⁴⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Internal Weak Pull-Up Resistor

Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

Symbol	Description	V _{CCIO} Conditions (V) ⁽¹²⁵⁾	Value ⁽¹²⁶⁾	Unit
R _{PU}		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option.	1.8 ±5%	25	kΩ
		1.5 ±5%	25	kΩ
		1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

⁽¹²⁴⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(125)}}$ The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

 $^{^{(126)}}$ These specifications are valid with a ±10% tolerance to cover changes over PVT.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2		Transceiver Speed Grade 3			Unit	
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit
Reference Clock								
Supported I/O Standards	Dedicated reference clock pin	erence clock 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL						
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40		710	40		710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	-	100		710	100		710	MHz

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Max	Unit
t _{INCCJ} ⁽¹⁷¹⁾ , ⁽¹⁷²⁾	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	—	0.15	UI (p-p)
	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
t _{outpj_dc} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	—		17.5	mUI (p-p)
t _{FOUTPJ_DC} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_		$25^{(176)},$ 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL (f _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)			250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			25 ⁽¹⁷⁶⁾ , 17.5 ⁽¹⁷⁴⁾	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

Symbol	Parameter	Min	Тур	Max	Unit
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	—
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Related Information

- Duty Cycle Distortion (DCD) Specifications on page 2-56
- DLL Range Specifications on page 2-53

DSP Block Specifications

Table 2-35: DSP Block Performance Specifications for Arria V GZ Devices

Mada	Performance			Unit			
Mode	C3, I3L	C4	14	Onit			
Modes using One DSP Block							
Three 9 × 9	480	420		MHz			
One 18 × 18	480	420	400	MHz			
Two partial 18×18 (or 16×16)	480	420	400	MHz			
One 27 × 27	400	350		MHz			
One 36 × 18	400	350		MHz			
One sum of two 18×18 (One sum of two 16×16)	400	350		MHz			
One sum of square	400	350		MHz			
One 18×18 plus $36 (a \times b) + c$	400	350		MHz			
Modes using Two DSP Blocks							
Three 18 × 18	400	350		MHz			
One sum of four 18×18	380	300		MHz			

Glossary

Table 2-68: Glossary

