
Intel - 5AGXBA7D6F35C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxba7d6f35c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V _{CC}	Core veltage power supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC}	Core voltage power supply	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration pins power supply	3.0 V	2.85	3.0	3.15	V
V _{CCPGM}		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	—	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	_	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

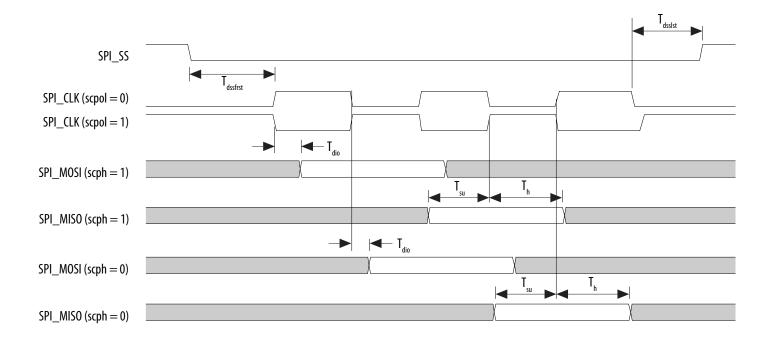
Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit
Symbol/Description	Min	Мах	Unit
Interface speed (PMA direct mode)	50	153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾	MHz
Interface speed (single-width mode)	25	187.5	MHz
Interface speed (double-width mode)	25	163.84	MHz

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36

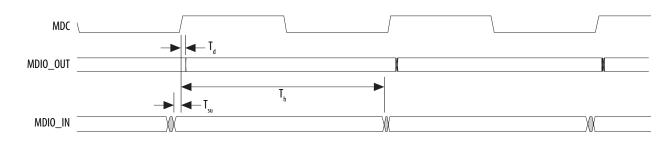
⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected.


⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected.

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
OBSAI	OBSAI 1536	1,536
OBSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

Figure 1-9: SPI Master Timing Diagram


Table 1-53: SPI Slave Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	20		ns
T _s	MOSI Setup time	5		ns
T _h	MOSI Hold time	5		ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8		ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8		ns
T _d	MISO output delay		6	ns

Figure 1-15: MDIO Timing Diagram

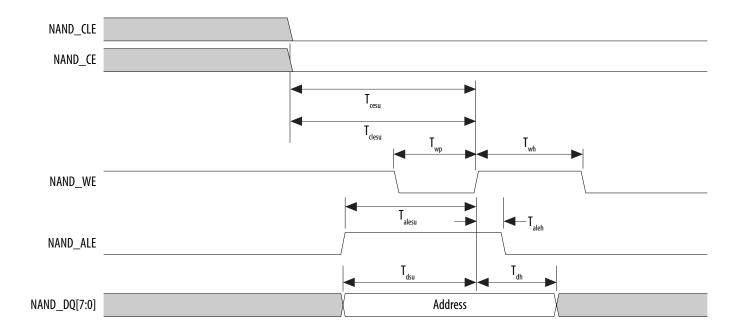

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast	Mode	Unit
Symbol	Description	Min	Max	Min	Max	Onit
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs
T _{clkhigh}	SCL high time	4.7	—	0.6		μs
T _{clklow}	SCL low time	4	_	1.3		μs
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs

Figure 1-18: NAND Address Latch Timing Diagram

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit	
Standard	100	300	ms	

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Related Information

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
Delk frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing

Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.

⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹² Available		Minimum	Fast I	Model	Slow Model				Unit	
) Settings Of	Settings Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	-13	-15	Unit	
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

Date	Version	Changes
June 2012	2.0	 Updated for the Quartus II software v12.0 release: Restructured document. Updated "Supply Current and Power Consumption" section. Updated Table 20, Table 21, Table 24, Table 25, Table 26, Table 35, Table 39, Table 43, and Table 52. Added Table 22, Table 23, and Table 33. Added Figure 1–1 and Figure 1–2. Added "Initialization" and "Configuration Files" sections.
February 2012	1.3	 Updated Table 2–1. Updated Transceiver-FPGA Fabric Interface rows in Table 2–20. Updated V_{CCP} description.
December 2011	1.2	Updated Table 2–1 and Table 2–3.
November 2011	1.1	 Updated Table 2–1, Table 2–19, Table 2–26, and Table 2–36. Added Table 2–5. Added Figure 2–4.
August 2011	1.0	Initial release.

Date	Version	Changes
January 2015	2015.01.30	Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards. Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLKperformance requires to meet transmitter REFCLK phase noise specification. Updated the description in Periphery Performance Specifications to mention that proper timing closure is
		 required in design. Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz. Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade). Changed the symbol for HPS PLL input jitter divide value from NR to N. Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board. Added HPS JTAG timing specifications. Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V. Updated the value in the V_{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

2-4 Recommended Operating Conditions

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle.

For example, a signal that overshoots to 3. V can be at 3. V for only 21% over the lifetime of the device for a device lifetime of 10 years, the overshoot duration amounts to 2 years.

Symbol	Description	Condition (V)	Overshoot Duration as $\% @ T_J = 100^{\circ}C$	Unit
		3.⊠	100	%
		3.5	64	%
		3.⊠	36	%
		3.5	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05		%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Recommended Operating Conditions

Table 2-5: Recommended Operating Conditions for Arria V GZ Devices

Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CC}	Core voltage and periphery circuitry power supply ⁽¹¹⁵⁾		0.2	0.8	0.⊠	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.
Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁵⁾ The V_{CC} core supply must be set to 0.⁽¹¹⁵⁾ If the PartialReconfiguration (PR) feature is used.

Symbol	Description	Conditions	Resistance	Unit		
Symbol	Description Conditions		C3, I3L	C4, I4	omt	
25- R s	Internal series termination without calibration (25- setting)	V _{CCIO} ⊠.⊠and 1.5 V	40	40	%	
25- R s	Internal series termination without calibration (25- setting)	V _{CCIO} ⊠.2 V	50	50	%	
50- R _s	Internal series termination without calibration (50- setting)	V _{CCIO} ⊠.⊠and 1.5 V	40	40	%	
50- R _s	Internal series termination without calibration (50- setting)	V _{CCIO} ⊠.2 V	50	50	%	
100- R _D	Internal differential termination (100- setting)	V _{CCIO} ⊠.5 V	25	25	%	

Figure 2-1: OCT Variation Without Re-Calibration for Arria V GZ Devices

$$\mathbf{R}_{\mathsf{OCT}} = \mathbf{R}_{\mathsf{SCAL}} \left(1 + \left(\frac{dR}{dT} \times \bigtriangleup T \right) \pm \left(\frac{dR}{dV} \times \bigtriangleup V \right) \right)$$

Notes:

1. The R_{oct} value shows the range of OCT resistance with the variation of temperature and V_{cclo}. 2. R_{scAL} is the OCT resistance value at power-up. 3. Δ T is the variation of temperature with respect to the temperature at power-up. 4. Δ V is the variation of voltage with respect to the V_{cclo} at power-up. 5. dR/dT is the percentage change of R_{scAL} with temperature. 6. dR/dV is the percentage change of R_{scAL} with voltage.

Table 2-12: OCT Variation after Power-Up Calibration for Arria V GZ Devices

Valid for a V_{CCIO} range of 5% and a temperature range of 0 to SC.

2-70 Remote System Upgrades Circuitry Timing Speci cation

Table 2-62: Uncompressed .rbf Sizes for Arria V GZ Devices

Variant	Member Code Conguration.rbf Size (bits)		IOCSR .rbf Size (bits) (223)	
	E1	13,55	562,20🛛	
Arria V GZ	E3	13,55	562,20🛛	
	E5	213,	561,80	
	EX	213,	561,80	

Table 2-63: Minimum Con gurationTime Estimation for Arria V GZ Devices

		Active Serial ⁽²²⁴⁾			Fast Passive Parallel ⁽²²⁵⁾		
Variant	Member Code	Width	DCLK (MHz)	Min Con g Time (ms)	Width	DCLK (MHz)	Min Cong Time (ms)
Arria V GZ	E1	4	100	344	32	100	43
	E3	4	100	344	32	100	43
	E5	4	100	534	32	100	6⊠
	EX	4	100	534	32	100	6⊠

Remote System Upgrades Circuitry Timing Speci cation

Table 2-64: Remote System Upgrade Circuitry Timing Speci cations

Parameter	Minimum	Maximum	Unit
t _{RUNCONFIG} (226)	250		ns
t _{RUMRSTIMER} (22)	250		ns

⁽²²³⁾ The IOCSR rbf size is specifically for the Configuration via Protocol (CvP) feature.

⁽²²⁴⁾ DCLK frequency of 100 MHz using elernal CLKUSR.

⁽²²⁵⁾ MaxPGA FPP bandwidth may exeed bandwidth available from some exernal storage or control logic.

