
E·XFL

Intel - 5AGXBB1D4F40C5N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	14151
Number of Logic Elements/Cells	300000
Total RAM Bits	17358848
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb1d4f40c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AV-51002 2017.02.10

1-5

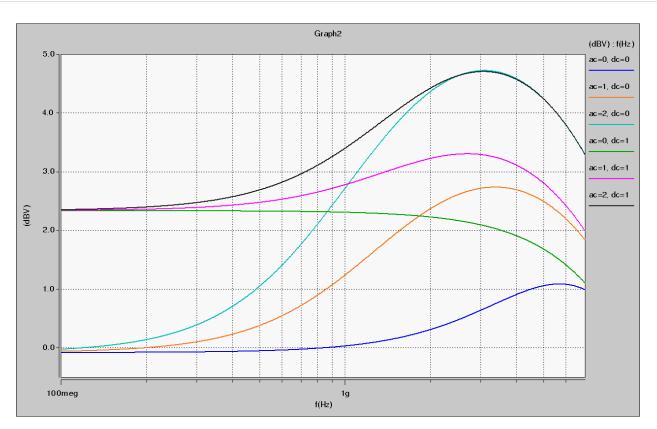
Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Core veltage power supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC}	Core voltage power supply	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration pins power supply	3.0 V	2.85	3.0	3.15	V
V _{CCPGM}		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	—	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	_	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30		33	30	_	33	kHz
Spread-spectrum downspread	PCIe	—	0 to -0.5%	_		0 to -0.5%	—	
On-chip termination resistors	_	_	100		_	100	—	Ω
V _{ICM} (AC coupled)		—	1.1/1.15 ⁽²⁶⁾		_	1.1/1.15 ⁽²⁶⁾	—	V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz	—	_	-50	_	—	-50	dBc/Hz
	100 Hz	_	_	-80	_	—	-80	dBc/Hz
Transmitter REFCLK phase	1 KHz	—		-110	_	—	-110	dBc/Hz
noise ⁽²⁷⁾	10 KHz	_	_	-120	_	_	-120	dBc/Hz
	100 KHz	—	_	-120	_	—	-120	dBc/Hz
	≥1 MHz			-130	_	_	-130	dBc/Hz
R _{REF}	—	—	2000 ±1%		—	2000 ±1%	_	Ω

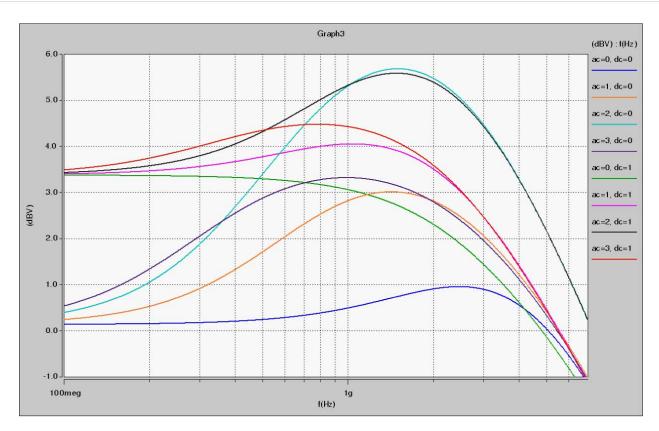


⁽²⁶⁾ For data rate \leq 3.2 Gbps, connect V_{CCR_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate > 3.2 Gbps, connect V_{CCR_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

⁽²⁷⁾ The transmitter REFCLK phase jitter is 30 ps p-p at bit error rate (BER) 10^{-12} .

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices


Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-3: CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)	
	PCIe Gen1	2,500	
PCIe	PCIe Gen2	5,000	
	PCIe Cable	2,500	
XAUI	XAUI 2135	3,125	
	SRIO 1250 SR	1,250	
	SRIO 1250 LR	1,250	
	SRIO 2500 SR	2,500	
	SRIO 2500 LR	2,500	
	SRIO 3125 SR	3,125	
Serial RapidIO [®] (SRIO)	SRIO 3125 LR	3,125	
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000	
	SRIO 5000 MR	5,000	
	SRIO 5000 LR	5,000	
	SRIO_6250_SR	6,250	
	SRIO_6250_MR	6,250	
	SRIO_6250_LR	6,250	

Symbol	Condition		-I3, -C4		–I5, –C5		-C6			Unit	
Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
t _{x Jitter} -Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps	_	-	260		_	300	_	_	350	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—	_	0.16		_	0.18	_		0.21	UI
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	_			0.15			0.15			0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards ⁽⁸²⁾	_	_	160			180	_		200	ps
t _{RISE} and t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Network	_	_	250			250			300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network			500		_	500			500	ps

 $^{^{(82)}\,}$ This applies to default pre-emphasis and V_{OD} settings only.

FPP Configuration Timing when DCLK-to-DATA[] >1

Table 1-67: FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	—	600	ns
t _{CF2ST0}	nconfig low to nstatus low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁸⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1506 ⁽⁹⁹⁾	μs
t _{CF2CK} ⁽¹⁰⁰⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁰⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	$N - 1/f_{\rm DCLK}^{(101)}$	_	s
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰²⁾	175	437	μs

⁽⁹⁸⁾ This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁹⁾ This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

 $^{^{(100)}}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰¹⁾ N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

⁽¹⁰²⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
DCLK frequency in AS configuration scheme	5.3	7.9	12.5	MHz
	10.6	15.7	25.0	MHz
	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing

Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.

⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

1-82 PS Configuration Timing

Symbol	Parameter	Minimum	Maximum	Unit
$t_{CF2CK}^{(105)}$	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁵⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f _{MAX}	DCLK frequency	-	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰⁶⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK period}$		_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × Clkusr period)	_	
T _{init}	Number of clock cycles required for device initialization	8,576	—	Cycles

Related Information

PS Configuration Timing

Provides the PS configuration timing waveform.

 $^{^{(105)}}$ If <code>nstatus</code> is monitored, follow the t_{ST2CK} specification. If <code>nstatus</code> is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰⁶⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Initialization

Table 1-71: Initialization Clock Source Option and the Maximum Frequency for Arria V Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	
Clkusr ⁽¹⁰⁷⁾ DClk	PS and FPP	125	Т
	AS	100	1 init
	PS and FPP	125	

Configuration Files

Table 1-72: Uncompressed .rbf Sizes for Arria V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus Prime software. However, for a specific version of the Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁰⁷⁾ To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus Prime software from the **General** panel of the **Device and Pin Options** dialog box.

Term		Definition					
		Definition					
Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The values indicate the voltage levels at which the receiver must meet its timing specifications. The DC value indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approxis intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard						
	V _{0Н}		V _{IH(AC)}				
			VIH(DC)				
		V REF	/ V _{IL(DC)}				
		/	/ V il(AC)				
	V _{0L}						
			V _{SS}				
t _C	High-speed receiver/transmitter input and output clock period.						
TCCS (channel-to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).						
t _{DUTY}	High-speed I/O block—Duty cycl	e on high-speed transmitter outpu	t clock.				

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ

Symbol	Description	Conditions	Resistance	Unit	
Symbol	Description	Conditions	C3, I3L	C4, I4	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%
100-Ω R _D	Internal differential termination (100- Ω setting)	$V_{CCIO} = 2.5 V$	±25	±25	%

Figure 2-1: OCT Variation Without Re-Calibration for Arria V GZ Devices

$$\mathbf{R}_{\text{OCT}} = \mathbf{R}_{\text{SCAL}} \left(1 + \left(\frac{dR}{dT} \times \bigtriangleup T \right) \pm \left(\frac{dR}{dV} \times \bigtriangleup V \right) \right)$$

Notes:

1. The R_{oct} value shows the range of OCT resistance with the variation of temperature and V_{ccio} . 2. R_{scAL} is the OCT resistance value at power-up. 3. ΔT is the variation of temperature with respect to the temperature at power-up. 4. ΔV is the variation of voltage with respect to the V_{ccio} at power-up. 5. dR/dT is the percentage change of R_{scAL} with temperature. 6. dR/dV is the percentage change of R_{scAL} with voltage

6. dR/dV is the percentage change of R_{SCAL} with voltage.

Table 2-12: OCT Variation after Power-Up Calibration for Arria V GZ Devices

Valid for a V_{CCIO} range of \pm 5% and a temperature range of 0° to 85°C.

I/O Standard	Vc	_{:CIO} (V) ⁽	_O (V) ⁽¹²⁸⁾ V _{ID} (mV) ⁽¹²⁹⁾ V _{ICM(DC)} (V)		_D (mV) ⁽¹²⁹⁾ V _{ICM(DC)} (V)			V _{OD} (V) ⁽¹³⁰⁾			V _{OCM} (V) ⁽¹³⁰⁾				
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
RSDS (HIO) (133)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3		1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (134)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25		0.6	1	1.2	1.4
LVPECL	_		_	300			0.6	D _{MAX} ≤ 700 Mbps	1.8	_			_	_	_
(135), (136)			_	300			1	D _{MAX} > 700 Mbps	1.6	_	_		_	_	_

Glossary on page 2-73

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

RL range: $90 \le RL \le 110 \Omega$. (130)

⁽¹³³⁾ For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

⁽¹³⁴⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

⁽¹³⁵⁾ LVPECL is only supported on dedicated clock input pins.

⁽¹³⁶⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
Supported data range	_	600		3250/ 3125 ⁽¹⁵⁸⁾	600	_	3250/ 3125 ⁽¹⁵⁸⁾	Mbps
t _{pll_powerdown} ⁽¹⁵⁹⁾	_	1			1	_		μs
t _{pll_lock} ⁽¹⁶⁰⁾				10			10	μs

Arria V Device Overview

For more information about device ordering codes.

Clock Network Data Rate

Table 2-29: Clock Network Maximum Data Rate Transmitter Specifications

Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

ATX PLL				CMU PLL ⁽¹⁶¹⁾			fPLL		
Clock Network	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)		Non-bonded Mode (Gbps)	Bonded Mode (Gbps)		Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
x1 ⁽¹⁶²⁾	12.5	_	6	12.5	_	6	3.125	_	3
x6 ⁽¹⁶²⁾	_	12.5	6	_	12.5	6	_	3.125	6
x6 PLL Feedback ⁽¹⁶³⁾	_	12.5	Side-wide	_	12.5	Side-wide	_		_

⁽¹⁵⁸⁾ When you use fPLL as a TXPLL of the transceiver.

 $^{^{(159)}}$ t_{pll_powerdown} is the PLL powerdown minimum pulse width.

⁽¹⁶⁰⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶²⁾ Channel span is within a transceiver bank.

⁽¹⁶³⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.						
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)		
	0 (166)	0	32	640		
	1 ⁽¹⁶⁶⁾	20	33	660		
	2(166)	40	34	680		
	3(166)	60	35	700		
	4 ⁽¹⁶⁶⁾	80	36	720		
	5 ⁽¹⁶⁶⁾	100	37	740		
	6	120	38	760		
$ m V_{OD}$ differential peak to peak typical	7	140	39	780		
	8	160	40	800		
	9	180	41	820		
	10	200	42	840		
	11	220	43	860		
	12	240	44	880		
	13	260	45	900		
	14	280	46	920		

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

Symbol	Parameter	Min	Тур	Мах	Unit
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

- Duty Cycle Distortion (DCD) Specifications on page 2-56
- DLL Range Specifications on page 2-53

DSP Block Specifications

Table 2-35: DSP Block Performance Specifications for Arria V GZ Devices

Mode	Performar	nce		Unit
mode	C3, I3L	C4	14	Onic
Modes using One DSP Block				
Three 9 × 9	480	42	20	MHz
One 18 × 18	480	420	420 400	
Two partial 18×18 (or 16×16)	480	420	400	MHz
One 27 × 27	400	35	50	MHz
One 36 × 18	400	35	50	MHz
One sum of two 18×18 (One sum of two 16×16)	400	35	50	MHz
One sum of square	400	35	50	MHz
One 18×18 plus $36 (a \times b) + c$	400	35	50	MHz
Modes using Two DSP Blocks	·			
Three 18 × 18	400	35	50	MHz
One sum of four 18 × 18	380	30	00	MHz

Symbol	Conditions		C3, I3I			C4, I4		Unit
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit
	SERDES factor J = 3 to 10 (182), (183)	(184)	_	1250	(184)	_	1050	Mbps
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)		1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(184)		(189)	(184)		(189)	Mbps
	SERDES factor J = 1, uses SDR Register	(184)	_	(189)	(184)		(189)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 ⁽¹⁹¹⁾	(184)		840	(184)		840	Mbps

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

JTAG Configuration Specifications

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 (203)		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output		11 (204)	ns
t_{JPZX}	JTAG port high impedance to valid output		14 (204)	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Arria V GZ Device Datasheet

Altera Corporation

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

⁽²⁰⁴⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{IPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

2-76 Glossary	2-76	Glossary
---------------	------	----------

Term	Definition
R _L	Receiver differential input discrete resistor (external to the Arria V GZ device).
SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:
	Bit Time
	0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)
Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard

