

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Obsolete
Number of LABs/CLBs	14151
Number of Logic Elements/Cells	300000
Total RAM Bits	17358848
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb1d6f31c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions Switching Characteristics Transceiver Performance Specifications Core Performance Specifications Periphery Performance Configuration Specification POR Specifications JTAG Configuration Specifications Fast Passive Parallel (FPP) Configuration Timing Active Serial Configuration Timing	2-1
Switching Characteristics	2-21
Transceiver Performance Specifications	
Core Performance Specifications	2-37
Periphery Performance	
Configuration Specification	2-56
POR Specifications	2-56
JTAG Configuration Specifications	
Fast Passive Parallel (FPP) Configuration Timing	
Active Serial Configuration Timing Passive Serial Configuration Timing	
Passive Serial Configuration Timing	2-67
Initialization	
Initialization	
Remote System Upgrades Circuitry Timing Specification	2-70
User Watchdog Internal Oscillator Frequency Specification	2-71
I/O Timing	2-71
Programmable IOE Delay	2-72
Programmable Output Buffer Delay	
Glossary	2-73
Programmable Output Buffer Delay Glossary Document Revision History	2-78

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit	
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V	
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v	
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V	
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v	
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1.17	1.20	1.23	V	
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)		1.20		v	
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	$1.1/1.15^{(6)}$	1.14/1.18	V	
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)		1.1/1.13	1.14/1.10	v	
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1.17	1.20	1.23	V	
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17	1.20	1.23	v	
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.373	V	

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCL_GXBL}	GX and SX speed grades—clock network power (left side)	1.08/1.12	$1.1/1.15^{(6)}$	1.14/1.18	V
V _{CCL_GXBR}	GX and SX speed grades—clock network power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCL_GXBL}	GT and ST speed grades—clock network power (left side)	1.17	1.20	1.23	V
V _{CCL_GXBR}	GT and ST speed grades—clock network power (right side)	1.17	1.20	1.23	v

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

HPS Power Supply Operating Conditions

Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS core	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC_HPS}	voltage and periphery circuitry power supply	-I3	1.12	1.15	1.18	V

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Standard		V _{CCIO} (V))		V _{ID} (mV) ⁽¹⁶⁾	6) $V_{ICM(DC)}(V)$ $V_{OD}(V)^{(17)}$		$V_{ICM(DC)}(V)$ $V_{OD}(V)^{(}$		V _{OCM} (V) ⁽¹⁷⁾⁽¹⁸⁾		17)(18)				
	Min	Тур	Мах	Min	Condition	Мах	Min	Condition	Мах	Min	Тур	Max	Min	Тур	Max	
PCML	Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I reference clock I/O pin specifications, refer to Transceiver Specifications for Arria V GX and S for Arria V GT and ST Devices tables.															
2.5 V	2.375	2.5	2.625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1.125	1.25	1.375	
LVDS ⁽¹⁹⁾	2.375	2.3	2.023	100	1.25 V		1.05	D _{MAX} > 1.25 Gbps	1.55	0.247		0.0	1.125	1.23	1.575	
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4	
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300		1.425	0.25	_	0.6	1	1.2	1.4	
LVPECL ⁽²²⁾				300			0.60	D _{MAX} ≤ 700 Mbps	1.80							
		_		500			1.00	D _{MAX} > 700 Mbps	1.60							

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4			Transc	eiver Speed G	Unit		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit	
Run length	—	—	_	200	_	_	200	UI	
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Gain and Response	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.						

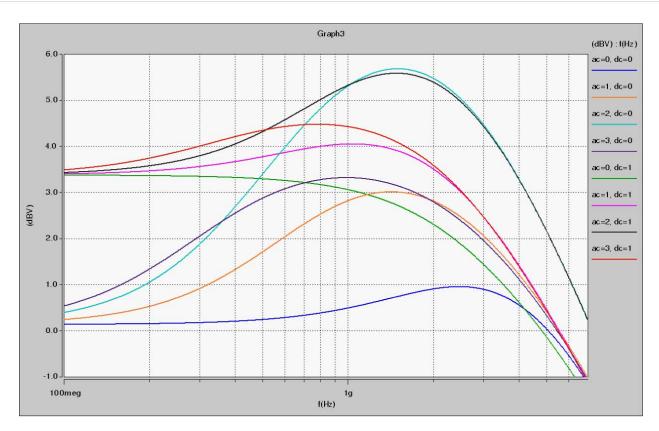
Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transc	eiver Speed G	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611	_	6553.6	611		3125	Mbps
V _{OCM} (AC coupled)			650	_		650		mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	—	85	_		85		Ω
Differential on-chip	100- Ω setting	—	100	_		100		Ω
termination resistors	120- Ω setting	_	120	_		120		Ω
	150-Ω setting	—	150	_		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps		_	15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode			180			180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Transceiver Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Max	Onic
Supported I/O standards	1.2 V PCML, 1.4 VPCML	1.5 V PCML, 2.5	V PCML, Differe	ential LVPECL ⁽⁴⁰⁾ ,	HCSL, and LVDS
Input frequency from REFCLK input pins	_	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Duty cycle	—	45		55	%
Peak-to-peak differential input voltage	—	200		300 ⁽⁴²⁾ /2000	mV
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30		33	kHz
Spread-spectrum downspread	PCIe		0 to -0.5%		—
On-chip termination resistors —			100		Ω
V _{ICM} (AC coupled)	—	_	1.2	—	V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV


⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (41)

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-3: CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial RapidIO [®] (SRIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250

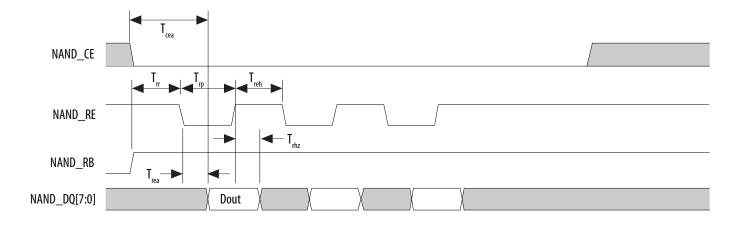
Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
OBSAI	OBSAI 1536	1,536
OBSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

DSP Block Performance Specifications

		Performance	Unit		
Mode		–I3, –C4	-I5, -C5	-C6	Onit
	Independent 9×9 multiplication	370	310	220	MHz
	Independent 18×19 multiplication	370	310	220	MHz
	Independent 18 × 25 multiplication	370	310	220	MHz
Modes using One DSP	Independent 20×24 multiplication	370	310	220	MHz
Block	Independent 27×27 multiplication	310	250	200	MHz
	Two 18×19 multiplier adder mode	370	310	220	MHz
	18×18 multiplier added summed with 36- bit input	370	310	220	MHz
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	370	310	220	MHz

Memory Block Performance Specifications


To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .

Arria V GX, GT, SX, and ST Device Datasheet

Figure 1-20: NAND Data Read Timing Diagram

ARM Trace Timing Characteristics

Table 1-61: ARM Trace Timing Requirements for Arria V Devices

Most debugging tools have a mechanism to adjust the capture point of trace data.

Description	Min	Мах	Unit
CLK clock period	12.5	—	ns
CLK maximum duty cycle	45	55	%
CLK to D0 –D7 output data delay	-1	1	ns

UART Interface

The maximum UART baud rate is 6.25 megasymbols per second.

GPIO Interface

The minimum detectable general-purpose I/O (GPIO) pulse width is 2 µs. The pulse width is based on a debounce clock frequency of 1 MHz.

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
		0.82	0.85	0.88		
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCR_GXBR} ⁽¹²¹⁾	Receiver analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88	V	
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03		
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V	

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{SWIN}	V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Мах		
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$		
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175		V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6		
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_		
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$		
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_		
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	—	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30		

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)		$V_{X(AC)}(V)$		V _{CM(DC)} (V)			V _{DIF(AC)} (V)			
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68	_	0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

2-28	Transmitter
------	-------------

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
	85- Ω setting	_	85 ± 20%	_		85 ± 20%	_	Ω
Differential on-chip termination	100-Ω setting	—	100 ± 20%	_		100 ± 20%		Ω
resistors	120-Ω setting	_	120 ± 20%			120 ± 20%		Ω
	150-Ω setting	_	150 ± 20%	_		150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650			650		mV
V _{OCM} (DC coupled)	_		650			650		mV
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	ps
Intra-transceiver block transmitterx6 PMA bonded modechannel-to-channel skew		—		120		_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	xN PMA bonded mode	—	—	500	_	_	500	ps

Related Information

Arria V Device Overview

For more information about device ordering codes.

Symbol	Parameter	Min	Тур	Max	Unit
t _{outpj_io} , ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTPJ_IO	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)			60	mUI (p-p)
t _{FOUTPJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
FOUTPJ_IO	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)		_	60	mUI (p-p)
+ (173) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			600	ps (p-p)
t _{OUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)			60	mUI (p-p)
t _{FOUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
^L FOUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)			60	mUI (p-p)
t	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{CASC_OUTPJ_DC} ⁽¹⁷³⁾ , ⁽¹⁷⁷⁾	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit	
4	120	128	ps	

Memory Output Clock Jitter Specifications

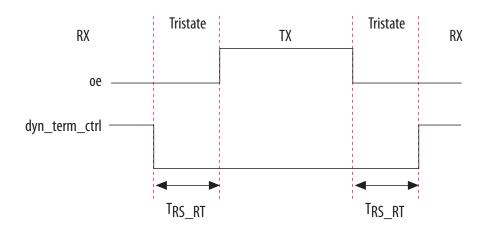
Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

Clock Network	Parameter	Symbol	С3,	I3L	C4	, 14	Unit
CIOCK NELWOIK	ralameter	Symbol	Min	Мах	Min	Мах	
	Clock period jitter	t _{JIT(per)}	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	-90	90	-90	90	ps
	Clock period jitter	t _{JIT(per)}	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-60	60	-70	70	ps
	Duty cycle jitter	t _{JIT(duty)}	-45	45	-56	56	ps



OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Мах	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R _S /R _T calibration	_	1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out		32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

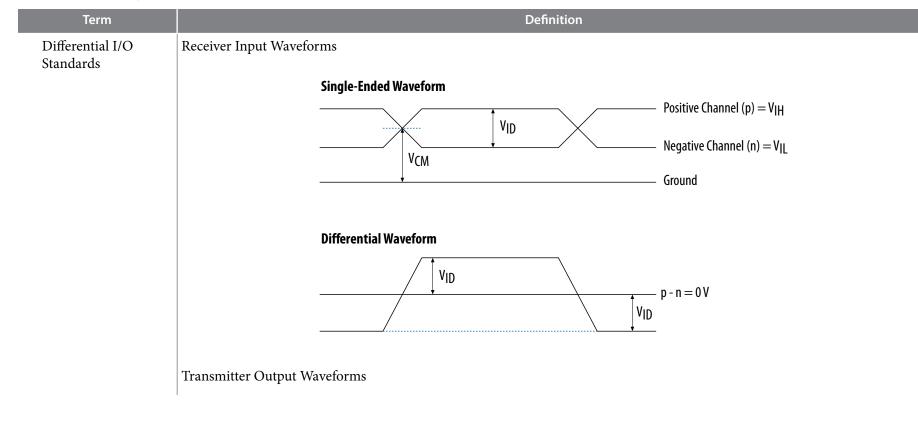
FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2-8: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1,

t_{CF2ST1} tcfg ;↔ nCONFIG ŤĊF2CK nSTATUS (3) 🕳 tstatus tCF2ST0 CONF_DONE (4) TCL tCH tsT2CK ŤĊF2CD (8) DCLK (6) (7) 1 2 ••• r 2 ••• r 1 \mathbf{D} (5) tCLK DATA[31..0] (8) Word 0 Word User Mode Word 3 • • • Word (n-1) tDH tDH tpsy High-Z User I/O User Mode INIT DONE (9) tCD2UM

Timing when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:


- 1. To find out the DCLK-to-DATA[] ratio for your system, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 2. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 3. After power-up, the Arria V GZ device holds nSTATUS low for the time as specified by the POR delay.
- 4. After power-up, before and during configuration, CONF_DONE is low.
- 5. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 6. "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 7. If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[31.0] pins prior to sending the first DCLK rising edge.
- 8. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 9. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Glossary

Table 2-68: Glossary

2-76 Glossary	2-76	Glossary
---------------	------	----------

Term	Definition				
R _L	Receiver differential input discrete resistor (external to the Arria V GZ device).				
SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:				
	Bit Time				
	0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)				
Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard $\frac{V_{\text{KEF}}}{V_{\text{REF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}}$				

