
E·XFL

Intel - 5AGXBB3D4F40C4N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	704
Number of Gates	·
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb3d4f40c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS I/O	3.3 V	3.135	3.3	3.465	V
V _{CCPD_HPS} ⁽⁸⁾	pre-driver power	3.0 V	2.85	3.0	3.15	V
	supply	2.5 V	2.375	2.5	2.625	V
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
	HPS I/O	2.5 V	2.375	2.5	2.625	V
V _{CCIO_HPS}	buffers power	1.8 V	1.71	1.8	1.89	V
	supply	1.5 V	1.425	1.5	1.575	V
		1.35 V ⁽⁹⁾	1.283	1.35	1.418	V
		1.2 V	1.14	1.2	1.26	V
	HPS reset	3.3 V	3.135	3.3	3.465	V
X7	and clock	3.0 V	2.85	3.0	3.15	V
V _{CCRSTCLK_HPS}	input pins power	2.5 V	2.375	2.5	2.625	V
	supply	1.8 V	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁸⁾ V_{CCPD_HPS} must be 2.5 V when V_{CCIO_HPS} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD_HPS} must be 3.0 V when V_{CCIO_HPS} is 3.0 V. V_{CCPD_HPS} must be 3.3 V when V_{CCIO_HPS} is 3.3 V.

 $^{^{(9)}\,}$ V_{CCIO_HPS} 1.35 V is supported for HPS row I/O bank only.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Symbol/Description	Condition	Т	Unit				
Symbol/Description	Condition	Min	Тур	Мах	Ont		
t _{LTD_manual} ⁽⁵¹⁾	—	4	—	_	μs		
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	—	_	μs		
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100	ppm				
Run length	—	_	— — 200		UI		
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Ga and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria GX, GT, SX, and ST Devices diagrams.					

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit						
	Condition	Min	Тур	Max					
Supported I/O standards	1.5 V PCML								
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps				
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps				
V _{OCM} (AC coupled)	—		650		mV				
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV				

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Typical TX V_{OD} Setting for Arria V Transceiver Channels with termination of 100 Ω

Table 1-32: Typical TX Vor	Setting for Arria V Transceive	r Channels with termination of 100 Ω

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	6 ⁽⁵⁹⁾	120	34	680
	7 ⁽⁵⁹⁾	140	35	700
	8(59)	160	36	720
	9	180	37	740
	10	200	38	760
	11	220	39	780
	12	240	40	800
	13	260	41	820
	14	280	42	840
V _{OD} differential peak-to-peak typical	15	300	43	860
-) F	16	320	44	880
	17	340	45	900
	18	360	46	920
	19	380	47	940
	20	400	48	960
	21	420	49	980
	22	440	50	1000
	23	460	51	1020
	24	480	52	1040

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

⁽⁵⁹⁾ Only valid for data rates \leq 5 Gbps.

DSP Block Performance Specifications

Mode -			Performance	Unit	
		–I3, –C4	-I5, -C5	-C6	Onit
	Independent 9×9 multiplication	370	310	220	MHz
	Independent 18×19 multiplication	370	310	220	MHz
	Independent 18 × 25 multiplication	370	310	220	MHz
Modes using One DSP	Independent 20×24 multiplication	370	310	220	MHz
Block	Independent 27×27 multiplication	310	250	200	MHz
	Two 18×19 multiplier adder mode	370	310	220	MHz
	18×18 multiplier added summed with 36- bit input	370	310	220	MHz
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	370	310	220	MHz

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .

Arria V GX, GT, SX, and ST Device Datasheet

High-Speed I/O Specifications

Table 1-40: High-Speed I/O Specifications for Arria V Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block. When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

The Arria V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

Symbol		Condition			-I3, -C4		-I5, -C5			-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Onic	
f _{HSCLK_in} (inp Differential I/	out clock frequency) True /O Standards	Clock boost factor W = 1 to $40^{(72)}$	5	_	800	5	_	750	5	_	625	MHz	
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I I/O Standards ⁽⁷³⁾	Clock boost factor W = 1 to $40^{(72)}$	5	_	625	5	_	625	5		500	MHz	
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I/O Standards ⁽⁷⁴⁾	Clock boost factor W = 1 to $40^{(72)}$	5	_	420	5	_	420	5	_	420	MHz	
f _{HSCLK_OUT} (output clock frequency)		5	_	625(75)	5	_	625(75)	5	_	500 ⁽⁷⁵⁾	MHz	
Transmitter	True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J =3 to $10^{(76)}$	(77)		1250	(77)		1250	(77)		1050	Mbps	

⁽⁷³⁾ This applies to DPA and soft-CDR modes only.

⁽⁷²⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

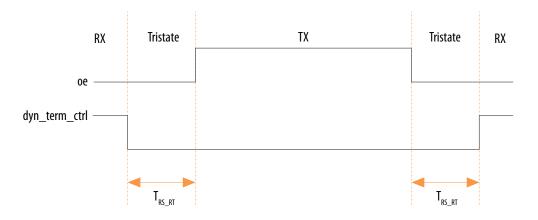
⁽⁷⁴⁾ This applies to non-DPA mode only.

⁽⁷⁵⁾ This is achieved by using the LVDS clock network.

 $^{^{(76)}}$ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽⁷⁷⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Symbol	Condition		-I3, -C4			-l5, -C5			-C6		Unit
Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SERDES factor J ≥ 8 ⁽⁷⁶⁾⁽⁷⁸⁾ , LVDS TX with RX DPA	(77)		1600	(77)		1500	(77)	_	1250	Mbps
	SERDES factor J = 1 to 2, Uses DDR Registers	(77)		(79)	(77)		(79)	(77)	_	(79)	Mbps
Emulated Differential I/ O Standards with Three External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		945	(77)		945	(77)		945	Mbps
Emulated Differential I/ O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		200	(77)		200	(77)		200	Mbps
t _{x Jitter} -True Differential I/O Standards	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps			160			160		_	160	ps
	Total Jitter for Data Rate < 600 Mbps			0.1	_	_	0.1	—	_	0.1	UI


 $^{^{(78)}}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface.

⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean.

⁽⁸⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

Figure 1-7: Timing Diagram for oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 1-47: Worst-Case DCD on Arria V I/O Pins

The output DCD cycle only applies to the I/O buffer. It does not cover the system DCD.

Symbol	-I3, -C4		-C5, -I5		-(26	Unit	
	Min	Мах	Min	Мах	Min	Мах	Ont	
Output Duty Cycle	45	55	45	55	45	55	%	

HPS Specifications

This section provides HPS specifications and timing for Arria V devices.

For HPS reset, the minimum reset pulse widths for the HPS cold and warm reset signals (HPS_nRST and HPS_nPOR) are six clock cycles of HPS_CLK1.

HPS PLL Input Jitter

Use the following equation to determine the maximum input jitter (peak-to-peak) the HPS PLLs can tolerate. The divide value (N) is the value programmed into the denominator field of the VCO register for each PLL. The PLL input reference clock is divided by this value. The range of the denominator is 1 to 64.

Maximum input jitter = Input clock period × Divide value (N) × 0.02

Table 1-50: Examples of Maximum Input Jitter

Input Reference Clock Period	Divide Value (N)	Maximum Jitter	Unit
40 ns	1	0.8	ns
40 ns	2	1.6	ns
40 ns	4	3.2	ns

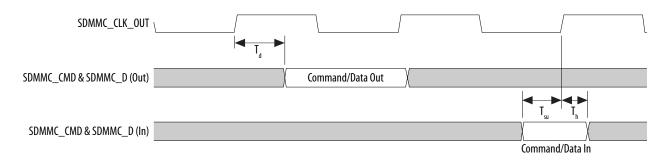

Quad SPI Flash Timing Characteristics

Table 1-51: Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
F _{clk}	SCLK_OUT clock frequency (External clock)	—	_	108	MHz
T _{qspi_clk}	QSPI_CLK clock period (Internal reference clock)	2.32	_		ns
T _{dutycycle}	SCLK_OUT duty cycle	45		55	%
T _{dssfrst}	Output delay QSPI_SS valid before first clock edge		1/2 cycle of SCLK_OUT		ns
T _{dsslst}	Output delay QSPI_SS valid after last clock edge	-1		1	ns
T _{dio}	I/O data output delay	-1		1	ns
T _{din_start}	Input data valid start			$(2 + R_{delay}) \times T_{qspi_clk} - 7.52^{(85)}$	ns

Figure 1-11: SD/MMC Timing Diagram

Related Information

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

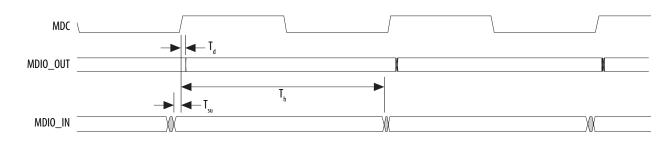

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	USB CLK clock period	_	16.67	_	ns
T _d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	—	11	ns
T _{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2	_		ns
T _h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1	—		ns

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast	Mode	Unit	
Symbol	Description	Min	Max	Min	Max	Onic	
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs	
T _{clkhigh}	SCL high time	4.7	—	0.6		μs	
T _{clklow}	SCL low time	4	_	1.3		μs	
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs	
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs	
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs	
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs	

Date	Version	Changes
December 2015	2015.12.16	 Updated Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices table. Updated F_{clk}, T_{dutvcvcle}, and T_{dssfrst} specifications.
		• Added T_{qspi_clk} , T_{din_start} , and T_{din_end} specifications.
		Removed T _{dinmax} specifications.
		• Updated the minimum specification for T _{clk} to 16.67 ns and removed the maximum specification in SPI Master Timing Requirements for Arria V Devices table.
		• Updated Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices table.
		• Updated T _{clk} to T _{sdmmc_clk_out} symbol.
		• Updated T _{sdmmc_clk_out} and T _d specifications.
		• Added T_{sdmmc_clk} , T_{su} , and T_h specifications.
		Removed T _{dinmax} specifications.
		Updated the following diagrams:
		Quad SPI Flash Timing Diagram
		SD/MMC Timing Diagram
		• Updated configuration .rbf sizes for Arria V devices.
		Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i> .

2-4 Recommended Operating Conditions

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle.

For example, a signal that overshoots to 3.95 V can be at 3.95 V for only $\sim 21\%$ over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~ 2 years.

Table 2-4: Maximum Allowed Overshoot During Transitions for Arria V GZ Devices
--

Symbol	Description	Condition (V)	Overshoot Duration as $\% @ T_J = 100^{\circ}C$	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Recommended Operating Conditions

Table 2-5: Recommended Operating Conditions for Arria V GZ Devices

Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CC}	Core voltage and periphery circuitry power supply (115)	_	0.82	0.85	0.88	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁵⁾ The V_{CC} core supply must be set to 0.9 V if the Partial Reconfiguration (PR) feature is used.

Hot Socketing

Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 µA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹²⁴⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Internal Weak Pull-Up Resistor

Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

Symbol	Description	V _{CCIO} Conditions (V) ⁽¹²⁵⁾	Value ⁽¹²⁶⁾	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option.	1.8 ±5%	25	kΩ
R_{PU}		1.5 ±5%	25	kΩ
		1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

⁽¹²⁴⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(125)}}$ The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

 $^{^{(126)}}$ These specifications are valid with a ±10% tolerance to cover changes over PVT.

I/O Standard	V _{IL(D}	_{C)} (V)	V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	L (m A)	I (m A)
I/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	l _{ol} (mA)	l _{oh} (mA)
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{\rm CCIO}$	$0.8 \times V_{ m CCIO}$	16	-16
SSTL-135 Class I, II		V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	—
SSTL-125 Class I, II		V _{REF} – 0.85	V _{REF} + 0.85	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	—
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	_
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{ m CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{\rm CCIO}$	$0.75 \times V_{ m CCIO}$	16	-16
HSUL-12	—	V _{REF} – 0.13	V _{REF} + 0.13	—	V _{REF} – 0.22	V _{REF} + 0.22	$0.1 \times V_{\rm CCIO}$	$0.9 \times V_{ m CCIO}$	—	—

Arria V GZ Device Datasheet

Altera Corporation

Sumbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Rise time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	ps
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾		_	400	_		400	
Duty cycle	—	45	_	55	45		55	%
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30	_	33	30		33	kHz
Spread-spectrum downspread	PCIe		0 to	_	_	0 to	—	%
			-0.5			-0.5		
On-chip termination resistors	—		100	_	_	100	_	Ω
Absolute V _{MAX}	Dedicated reference clock pin		_	1.6	_		1.6	V
	RX reference clock pin		_	1.2	_		1.2	
Absolute V _{MIN}	—	-0.4	_	_	-0.4	_	_	V
Peak-to-peak differential input voltage	-	200	-	1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	1000/900/850 (139)			1000/900/850 (139)			mV
	RX reference clock pin	1.0/0.9/0.85 (140)			1.0/0.9/0.85 ⁽¹⁴⁰⁾			mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

t_{ARESET}

Symbol	Parameter	Min	Тур	Max	Unit
f _{OUT} ⁽¹⁶⁹⁾	Output frequency for an internal global or regional clock (C3, I3L speed grade)	—	—	650	MHz
IOUT	Output frequency for an internal global or regional clock (C4, I4 speed grade)	_	_	580	MHz
f _{OUT_EXT} ⁽¹⁶⁹⁾	Output frequency for an external clock output (C3, I3L speed grade)	—	—	667	MHz
IOUT_EXT	Output frequency for an external clock output (C4, I4 speed grade)	—	—	533	MHz
t _{OUTDUTY}	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
f _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/ delays)	_		1	ms
	PLL closed-loop low bandwidth	_	0.3		MHz
t _{DLOCK}	PLL closed-loop medium bandwidth	_	1.5	_	MHz
	PLL closed-loop high bandwidth (170)	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps

10

_

Minimum pulse width on the areset signal

ns

 $^{^{(169)}}$ This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

⁽¹⁷⁰⁾ High bandwidth PLL settings are not supported in external feedback mode.

Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Мах	Min	Тур	Max	Onic
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards ⁽¹⁷⁹⁾	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		625	5	_	525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	625 (181)	5	—	525 (181)	MHz

Transmitter High-Speed I/O Specifications

Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

 $^{^{(179)}\,}$ This only applies to DPA and soft-CDR modes.

⁽¹⁸⁰⁾ Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

⁽¹⁸¹⁾ This is achieved by using the LVDS clock network.

2-64 FPP Configuration Timing when DCLK to DATA[] > 1

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (215)	_	—

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁵⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.