

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb3d4f40i5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V_{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe® hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
$\overline{V_{I}}$	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
1 7	I/O buffers power supply	1.8 V	1.71	1.8	1.89	V
V_{CCIO}	1/O bullers power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V _O	Output voltage	_	0	_	V _{CCIO}	V
Т	Operating junction temperature	Commercial	0	_	85	°C
T_{J}	Operating junction temperature	Industrial	-40	_	100	°C
$t_{RAMP}^{(4)}$	Power supply ramp time	Standard POR	200 μs	_	100 ms	_
'RAMP'	Tower supply ramp time	Fast POR	200 μs	_	4 ms	_

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

I/O Standard Specifications

Tables in this section list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Arria V devices.

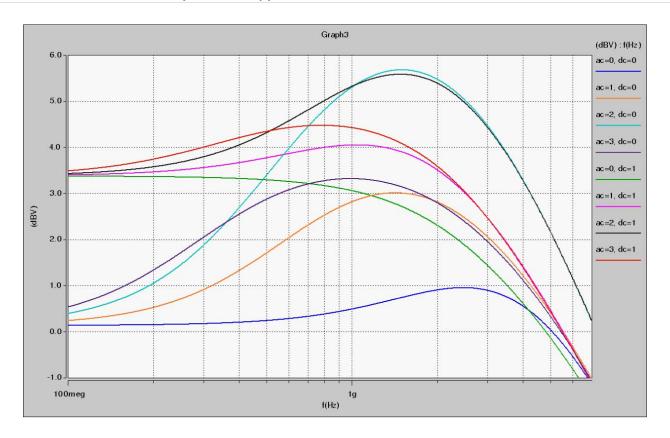
You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

Single-Ended I/O Standards

Table 1-14: Single-Ended I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		V _{IL} (V)		V _{IH}	V _{IH} (V)		V _{OH} (V)	I _{OL} ⁽¹³⁾	I _{OH} ⁽¹³⁾ (mA)
i/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	IOH. (IIIA)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
3.0-V PCI	2.85	3	3.15	_	$0.3 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{\text{CCIO}}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	_	$0.35 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.


Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-3: CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial RapidIO® (SRIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250

High-Speed I/O Specifications

Table 1-40: High-Speed I/O Specifications for Arria V Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block. When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

The Arria V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

	Symbol			−I3, −C4			−I5, −C5			-C6		Unit
	Зупьоі	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Offic
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards		Clock boost factor W = $1 \text{ to } 40^{(72)}$	5	_	800	5	_	750	5	_	625	MHz
f _{HSCLK_in} (input clock frequency) Single-Ended I/O Standards ⁽⁷³⁾		Clock boost factor W = 1 to 40 ⁽⁷²⁾	5	_	625	5	_	625	5	_	500	MHz
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I/O Standards ⁽⁷⁴⁾	Clock boost factor W = 1 to 40 ⁽⁷²⁾	5	_	420	5	_	420	5	_	420	MHz
f _{HSCLK_OUT} (d	f _{HSCLK_OUT} (output clock frequency)		5	_	625 ⁽⁷⁵⁾	5	_	625 ⁽⁷⁵⁾	5	_	500 ⁽⁷⁵⁾	MHz
Transmitter	True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor $J = 3$ to $10^{(76)}$	(77)	_	1250	(77)	_	1250	(77)		1050	Mbps

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

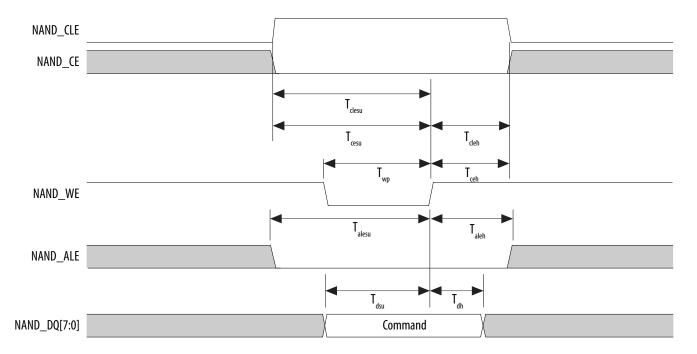
⁽⁷²⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

⁽⁷³⁾ This applies to DPA and soft-CDR modes only.

⁽⁷⁴⁾ This applies to non-DPA mode only.

⁽⁷⁵⁾ This is achieved by using the LVDS clock network.

⁽⁷⁶⁾ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.


The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

	Symbol	Condition		−I3, −C4		−l5, −C5			-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Offic
	TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps
	1003	Emulated Differential I/O Standards		_	300	_	_	300	_	_	300	ps
	True Differential I/O Standards - f _{HSDRDPA}	SERDES factor J =3 to 10 ⁽⁷⁶⁾	150	_	1250	150	_	1250	150	_	1050	Mbps
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps
Receiver		SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps
	f _{HSDR} (data rate)	SERDES factor J = 1 to 2, uses DDR registers	(77)	_	(79)	(77)	_	(79)	(77)	_	(79)	Mbps
DPA Mode	DPA run length	_	_	_	10000	_	_	10000	_	_	10000	UI
Soft-CDR Mode	Soft-CDR ppm tolerance	_	_	_	300	_	_	300	_	_	300	±ppm
Non-DPA Mode	Sampling Window	_	_	_	300	_	_	300	_	_	300	ps

You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Symbol	Description	Min	Max	Unit
$T_{dh}^{(89)}$	Data to write enable hold time	5	_	ns
T _{cea}	Chip enable to data access time	_	25	ns
T _{rea}	Read enable to data access time	_	16	ns
T_{rhz}	Read enable to data high impedance		100	ns
T _{rr}	Ready to read enable low	20	_	ns

Figure 1-17: NAND Command Latch Timing Diagram

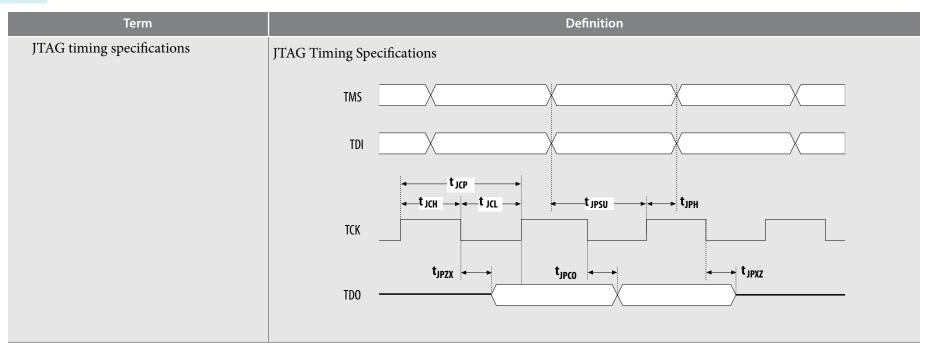
Symbol	Parameter	Minimum	Maximum	Unit
t _{STATUS}	nstatus low pulse width	268	1506(94)	μs
t _{CF2ST1}	nconfig high to nstatus high	_	1506 ⁽⁹⁵⁾	μs
t _{CF2CK} ⁽⁹⁶⁾	nconfig high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽⁹⁶⁾	nstatus high to first rising edge of DCLK	2	_	μs
$t_{ m DSU}$	DATA[] setup time before rising edge on DCLK	5.5	_	ns
$t_{ m DH}$	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	s
t_{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
f_{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁹⁷⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4× maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$t_{CD2CU} + (T_{init} \times CLKUSR period)$	_	_
T_{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

Related Information

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

Arria V GX, GT, SX, and ST Device Datasheet


⁽⁹⁴⁾ You can obtain this value if you do not delay configuration by extending the nconfig or the nstatus low pulse width.

⁽⁹⁵⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{^{(96)}}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽⁹⁷⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Term	Definition
	Transmitter Output Waveforms
	Single-Ended Waveform Positive Channel (p) = V_{OH} Negative Channel (n) = V_{OL} Ground
	Differential Waveform
$f_{ m HSCLK}$	Left/right PLL input clock frequency.
f_{HSDR}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDR} =1/TUI), non-DPA.
f _{HSDRDPA}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} =1/TUI), DPA.
J	High-speed I/O block—Deserialization factor (width of parallel data bus).

Arria V GX, GT, SX, and ST Device Datasheet **Altera Corporation**

AV-51002 2017.02.10

Term		Definition					
Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard						
				Vana			
				V _{CCI0}			
	V _{0H}			V _{IH(AC)}			
				V _{IH(DC)}			
		V _{REF}		V _{IL(DC)}			
				VIL(AC)			
	V _{0L}						
	V _{SS}						
$t_{\rm C}$	High-speed receiver/transmitter input and output clock period.						
TCCS (channel-to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).						
t _{DUTY}	High-speed I/O block—Duty cycl	e on high-speed transmitter o	output clo	ck.			

Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet

Term	Definition
$t_{ m FALL}$	Signal high-to-low transition time (80–20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input
t _{OUTPJ_IO}	Period jitter on the GPIO driven by a PLL
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL
$t_{ m RISE}$	Signal low-to-high transition time (20–80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
$ m V_{ID}$	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
$ m V_{IH}$	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
$ m V_{IL}$	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V_X	Input differential cross point voltage

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Symbol	Description	Minimum	Maximum	Unit
V_{I}	DC input voltage	-0.5	3.8	V
T_{J}	Operating junction temperature	-55	125	°C
T_{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 2-3: Transceiver Power Supply Absolute Conditions for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V_{CCA_GXBL}	Transceiver channel PLL power supply (left side)	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in the following table. They may also undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Mode ⁽¹⁶⁴⁾	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
Register	2	C3, I3L core speed grade	9.9	9	7.92	7.2	4.9	4.,5	3.92	3.6
Register	3	C4, I4 core speed grade	8.8	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Related Information

Operating Conditions on page 2-1

10G PCS Data Rate

Table 2-31: 10G PCS Approximate Maximum Data Rate (Gbps) for Arria V GZ Devices

Mode ⁽¹⁶⁵⁾	Transceiver Speed	PMA Width	64	40	40	40	32	32
Mode	Grade	PCS Width	64	66/67	50	40	64/66/67	32
FIFO	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
rirO	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92
Dogistan	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
Register	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽¹⁶⁵⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

JTAG Configuration Specifications

Table 2-54: JTAG Timing Parameters and Values for Arria V GZ Devices

Symbol	Description	Min	Max	Unit
t_{JCP}	TCK clock period	30	_	ns
t_{JCP}	TCK clock period	167 (203)	_	ns
t _{JCH}	TCK clock high time	14	_	ns
$t_{ m JCL}$	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t_{JPH}	JTAG port hold time	5	_	ns
$t_{ m JPCO}$	JTAG port clock to output	_	11 (204)	ns
$t_{ m JPZX}$	JTAG port high impedance to valid output	_	14 (204)	ns
t_{JPXZ}	JTAG port valid output to high impedance	_	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

 $^{^{(204)}}$ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{JPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

Symbol	Parameter	Minimum	Maximum	Unit
t_{CO}	DCLK falling edge to AS_DATA0/ASDO output	_	4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
$t_{\rm H}$	Data hold time after falling edge on DCLK	0	_	ns
t_{CD2UM}	CONF_DONE high to user mode (216)	175	437	μs
$t_{\rm CD2CU}$	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Altera Corporation

Arria V GZ Device Datasheet

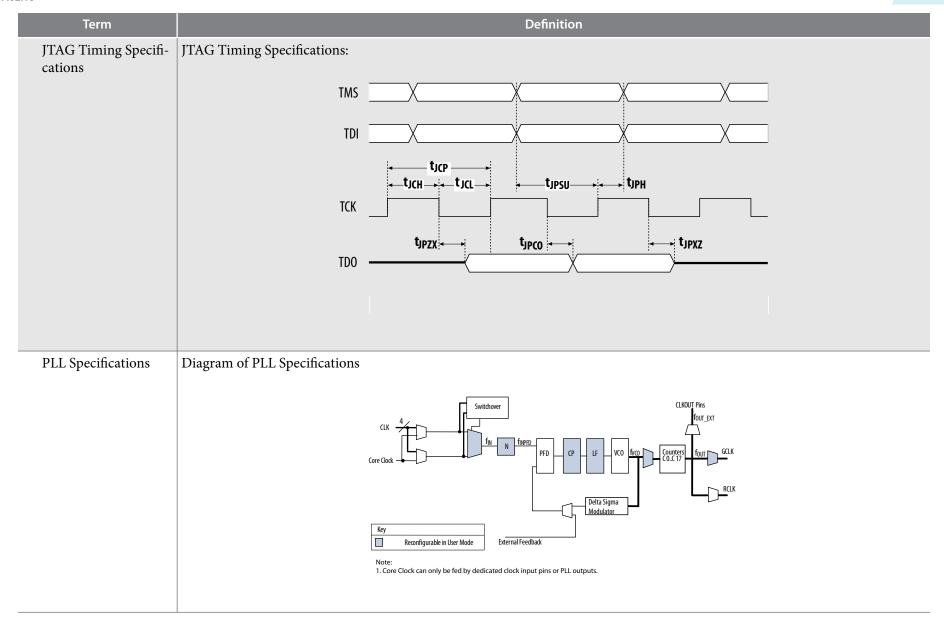
⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nconfig low pulse width	2	_	μs
t _{STATUS}	nstatus low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nconfig high to nstatus high	_	1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} (219)	nstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
$t_{\rm CL}$	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t_{CLK}	DCLK period	1/f _{MAX}	_	S
f_{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode (220)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	$t_{\text{CD2CU}} + (8576 \times \text{CLKUSR})$ period) (221)	_	_

 $^{^{(217)}}$ This value is applicable if you do not delay configuration by extending the nconfig or nstatus low pulse width.

Altera Corporation


Arria V GZ Device Datasheet

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

Term	Definition
$t_{\rm C}$	High-speed receiver and transmitter input and output clock period.
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).
$t_{ m DUTY}$	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
$t_{ m FALL}$	Signal high-to-low transition time (80-20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
$ ule{V_{ICM}}$	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
$\overline{ m V_{IH}}$	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
$ m V_{IL}$	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage

