E·XFL

Intel - 5AGXBB3D6F40C6N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb3d6f40c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Symbol	Description	V _{CCIO} (V)	Value	Unit
dR/dT		3.0	0.189	
		2.5	0.208	-
	OCT variation with temperature without recalibration	1.8	0.266	
		1.5	0.273	%/°C
		1.35	0.200	
		1.25	0.200	
		1.2	0.317	

Pin Capacitance

Table 1-11: Pin Capacitance for Arria V Devices

Symbol	Description	Maximum	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on left/right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins	6	pF
C _{IOVREF}	Input capacitance on V _{REF} pins	48	pF

Hot Socketing

Table 1-12: Hot Socketing Specifications for Arria V Devices

Symbol	Description	Maximum	Unit
I _{IOPIN (DC)}	DC current per I/O pin	300	μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8(10)	mA
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100	mA

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transc	Unit		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards	1.2 V PCM	1.2 V PCML, 1.4 V PCML, 1.5 V PCML, 2.5 V PCML, Differential LVPECL ⁽²³⁾ , HCSL, and LVDS						LVDS
Input frequency from REFCLK input pins	—	27	—	710	27		710	MHz
Rise time	Measure at $\pm 60 \text{ mV of}$ differential signal ⁽²⁴⁾			400			400	ps
Fall time	Measure at $\pm 60 \text{ mV of}$ differential signal ⁽²⁴⁾	_		400	_		400	ps
Duty cycle	_	45	_	55	45	_	55	%
Peak-to-peak differential input voltage	—	200		300 ⁽²⁵⁾ / 2000	200	_	300 ⁽²⁵⁾ / 2000	mV

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
	Condition	Min	Тур	Max	Min	Тур	Max	Onit
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz
Transceiver Reconfigura- tion Controller IP (mgmt_ clk_clk) clock frequency	_	75	_	125	75	_	125	MHz

Table 1-22: Receiver Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			llnit
symbol/Description	Condition	Min	Тур	Мах	Min	Тур	Max	Onit
Supported I/O standards		1	.5 V PCML,	2.5 V PCML,	LVPECL, an	d LVDS		
Data rate ⁽²⁸⁾		611	—	6553.6	611	—	3125	Mbps
Absolute V_{MAX} for a receiver pin ⁽²⁹⁾	_		_	1.2		—	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_		-0.4	—	—	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_		1.6		_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2		_	2.2	V

 ⁽²⁸⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
 ⁽²⁹⁾ The device cannot tolerate prolonged operation at this absolute maximum.

1-40 Transceiver Compliance Specification

Quartus Prime 1st	Quartus Prime V _{OD} Setting							
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
16	_	_	9.56	7.73	6.49		_	dB
17	_		10.43	8.39	7.02		_	dB
18	_		11.23	9.03	7.52		_	dB
19	_		12.18	9.7	8.02		_	dB
20	_		13.17	10.34	8.59		_	dB
21	_		14.2	11.1			_	dB
22	_		15.38	11.87			_	dB
23	_		_	12.67	_	_	_	dB
24	_		_	13.48			_	dB
25	_		_	14.37	_		_	dB
26	_						_	dB
27	_						_	dB
28	_	_	_	_	_	_	_	dB
29	_		_				_	dB
30	_						_	dB
31	_		_		_		_	dB

Related Information

SPICE Models for Altera Devices

Provides the Arria V HSSI HSPICE models.

Transceiver Compliance Specification

The following table lists the physical medium attachment (PMA) specification compliance of all supported protocol for Arria V GX, GT, SX, and ST devices. For more information about the protocol parameter details and compliance specifications, contact your Altera Sales Representative.

DLL Frequency Range Specifications

Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.

Number of DQS Delay Buffer	–I3, –C4	-I5, -C5	-C6	Unit
2	40	80	80	ps

Figure 1-10: SPI Slave Timing Diagram

Related Information

SPI Controller, Arria V Hard Processor System Technical Reference Manual

Provides more information about rx_sample_delay.

SD/MMC Timing Characteristics

Table 1-54: Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC_CLK_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC_CLK and the CSEL setting. The value of SDMMC_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.

Figure 1-16: I²C Timing Diagram

NAND Timing Characteristics

Table 1-60: NAND ONFI 1.0 Timing Requirements for Arria V Devices

The NAND controller supports Open NAND FLASH Interface (ONFI) 1.0 Mode 5 timing as well as legacy NAND devices. This table lists the requirements for ONFI 1.0 mode 5 timing. The HPS NAND controller can meet this timing by programming the c4 output of the main HPS PLL and timing registers provided in the NAND controller.

Symbol	Description	Min	Max	Unit
T _{wp} ⁽⁸⁹⁾	Write enable pulse width	10	—	ns
T _{wh} ⁽⁸⁹⁾	Write enable hold time	7		ns
T _{rp} ⁽⁸⁹⁾	Read enable pulse width	10		ns
T _{reh} ⁽⁸⁹⁾	Read enable hold time	7		ns
T _{clesu} ⁽⁸⁹⁾	Command latch enable to write enable setup time	10		ns
T _{cleh} ⁽⁸⁹⁾	Command latch enable to write enable hold time	5		ns
T _{cesu} ⁽⁸⁹⁾	Chip enable to write enable setup time	15		ns
T _{ceh} ⁽⁸⁹⁾	Chip enable to write enable hold time	5		ns
T _{alesu} ⁽⁸⁹⁾	Address latch enable to write enable setup time	10		ns
T _{aleh} ⁽⁸⁹⁾	Address latch enable to write enable hold time	5		ns
T _{dsu} ⁽⁸⁹⁾	Data to write enable setup time	10		ns

⁽⁸⁹⁾ Timing of the NAND interface is controlled through the NAND configuration registers.

1-82 PS Configuration Timing

Symbol	Parameter	Minimum	Maximum	Unit
$t_{CF2CK}^{(105)}$	nCONFIG high to first rising edge on DCLK	1506	—	μs
t _{ST2CK} ⁽¹⁰⁵⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f_{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰⁶⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK period}$	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

Related Information

PS Configuration Timing

Provides the PS configuration timing waveform.

 $^{^{(105)}}$ If <code>nstatus</code> is monitored, follow the t_{ST2CK} specification. If <code>nstatus</code> is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰⁶⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

I/O Standard Specifications

The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

Table 2-16: Single-Ended I/O Standards for Arria V GZ Devices

1/O Standard	V _{CCIO} (V)			V _{IL} (V)		V _{IH} (V)		V _{OL} (V) V _{OH} (V)		Ι (mΔ)	lou (mΔ)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Мах	Min	10L (1114)	юн (шлл)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 imes V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{\rm CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 2-17: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	0.51 × V _{CCIO}	$0.49 \times V_{CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{CCIO}$		$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{CCIO}$	0.5 × V _{CC} IO	0.6 × V _{CCIO}	0.44	0.44

Table 2-21: Differential I/O Standard Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V) ⁽¹²⁸⁾		V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹³⁰⁾		0)	V _{OCM} (V) ⁽¹³⁰⁾					
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to the "Transceiver Performance Specifications" section.														
2.5 V	2 375 2 5 2 6	5 2 6 2 5	100	V _{CM} =		0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	—	0.6	1.125	1.25	1.375	
(131)	2.373	2.5	2.025	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	—	0.6	1.125	1.25	1.375
BLVDS (132)	2.375	2.5	2.625	100				_		_	—			_	

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

⁽¹³⁰⁾ RL range: $90 \le RL \le 110 \Omega$.

⁽¹³¹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

 $^{^{(132)}}$ There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.

I/O Standard	V _{CCIO} (V) ⁽¹²⁸⁾		V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹³⁰⁾		0)	V _{OCM} (V) ⁽¹³⁰⁾					
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Мах
RSDS (HIO) (133)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3		1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (134)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25		0.6	1	1.2	1.4
LVPECL		_	_	300		_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_		_	_	
(135), (136)	_	_	_	300			1	D _{MAX} > 700 Mbps	1.6	_	_		_		

Related Information

Glossary on page 2-73

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

RL range: $90 \le RL \le 110 \Omega$. (130)

⁽¹³³⁾ For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

⁽¹³⁴⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

⁽¹³⁵⁾ LVPECL is only supported on dedicated clock input pins.

⁽¹³⁶⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	—			1.6	—	_	1.6	V
Maximum peak-to-peak differential	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$			1.8	—		1.8	V
device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$			2.4	—		2.4	V
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85		_	85	_	—	mV
	85– Ω setting		85 ± 30%	—	—	85 ± 30%	_	Ω
Differential on-chip termination	100– Ω setting		100 ± 30%	—	—	100 ± 30%	_	Ω
resistors	120– Ω setting		120 ± 30%	—	_	120 ± 30%	—	Ω
	150– Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Core Performance Specifications

Clock Tree Specifications

Table 2-33: Clock Tree Performance for Arria V GZ Devices

Symbol	Perfo	llait	
зульог	C3, I3L	C4, I4	
Global and Regional Clock	650	580	MHz
Periphery Clock	500	500	MHz

PLL Specifications

Table 2-34: PLL Specifications for Arria V GZ Devices

Symbol	Parameter	Min	Тур	Мах	Unit
f (167)	Input clock frequency (C3, I3L speed grade)	5	—	800	MHz
IN	Input clock frequency (C4, I4 speed grade)	5	—	650	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD	50	_	160	MHz
f	PLL VCO operating range (C3, I3L speed grade)	600	_	1600	MHz
IVCO	PLL VCO operating range (C4, I4 speed grade)	600	—	1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%

⁽¹⁶⁷⁾ This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽¹⁶⁸⁾ The VCO frequency reported by the Quartus II software in the **PLL Usage Summary** section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

Arria V GZ Device Datasheet

2-50 Soft CDR Mode High-Speed I/O Specifications

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽²⁰¹⁾	Maximum
Darallel Papid I/O	00001111	2	128	640 data transitions
rataliei Kapid 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
wiiscenaneous	01010101	8	32	640 data transitions

Soft CDR Mode High-Speed I/O Specifications

Table 2-44: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L				Unit		
Symbol		Min	Тур	Max	Min	Тур	Max	Onit
Soft-CDR ppm tolerance	—	_	_	300	_	_	300	± ppm

⁽²⁰¹⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Table 2-55: DCLK-to-DATA[] Ratio for Arria V GZ Devices

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA[] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Arria V GZ devices use the additional clock cycles to decrypt and decompress the configuration data.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
	Disabled	Disabled	1
FDD V8	Disabled	Enabled	1
rrr xo	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FDD v16	Disabled	Enabled	2
111 ×10	Enabled	Disabled	4
	Enabled	Enabled	4
	Disabled	Disabled	1
FDD ~32	Disabled	Enabled	4
FPP ×32	Enabled	Disabled	8
	Enabled	Enabled	8

Passive Serial Configuration Timing

Figure 2-10: PS Configuration Timing Waveform

Timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the Device and Pins Option.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} (219)	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	—	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	s
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (221)	_	_

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

2-70 Remote System Upgrades Circuitry Timing Specification

Table 2-62: Uncompressed .rbf Sizes for Arria V GZ Devices

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) ⁽²²³⁾
	E1	137,598,880	562,208
Arria V C7	E3	137,598,880	562,208
	E5	213,798,880	561,760
	E7	213,798,880	561,760

Table 2-63: Minimum Configuration Time Estimation for Arria V GZ Devices

Variant	Member Code	Active Serial ⁽²²⁴⁾		Fast Passive Parallel ⁽²²⁵⁾			
		Width	DCLK (MHz)	Min Config Time (ms)	Width	DCLK (MHz)	Min Config Time (ms)
Arria V GZ	E1	4	100	344	32	100	43
	E3	4	100	344	32	100	43
	E5	4	100	534	32	100	67
	E7	4	100	534	32	100	67

Remote System Upgrades Circuitry Timing Specification

Table 2-64: Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽²²⁶⁾	250	—	ns
t _{RU_nRSTIMER} ⁽²²⁷⁾	250	_	ns

⁽²²³⁾ The IOCSR **.rbf** size is specifically for the Configuration via Protocol (CvP) feature.

⁽²²⁴⁾ DCLK frequency of 100 MHz using external CLKUSR.

⁽²²⁵⁾ Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

Programmable IOE Delay

Fast Model Slow Model Available Parameter (228) Min Offset (229) Unit Settings Industrial Commercial C3 C4 I3L 14 D1 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0 D2 32 0.230 0.244 0.459 0.503 0.456 0.500 ns D3 8 0 1.699 2.992 3.192 1.587 3.047 3.257 ns 0 D4 64 0.464 0.492 0.924 1.011 0.920 1.006 ns D5 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0.499 D6 32 0 0.244 0.503 0.229 0.458 0.456 ns

Table 2-66: IOE Programmable Delay for Arria V GZ Devices

Programmable Output Buffer Delay

Table 2-67: Programmable Output Buffer Delay for Arria V GZ Devices

You can set the programmable output buffer delay in the Quartus II software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

Symbol	Parameter	Typical	Unit
	Rising and/or falling edge delay	0 (default)	ps
D		50	ps
DOUTBUF		100	ps
		150	ps

⁽²²⁸⁾ You can set this value in the Quartus II software by selecting **D1**, **D2**, **D3**, **D4**, **D5**, and **D6** in the **Assignment Name** column of **Assignment Editor**.

⁽²²⁹⁾ Minimum offset does not include the intrinsic delay.