

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb7d4f40c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Arria V GX, GT, SX, and ST Device Datasheet

1

2017.02.10

AV-51002

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria[®] V devices.

Arria V devices are offered in commercial and industrial grades. Commercial devices are offered in -C4 (fastest), -C5, and -C6 speed grades. Industrial grade devices are offered in the -I3 and -I5 speed grades.

Related Information

Arria V Device Overview

Provides more information about the densities and packages of devices in the Arria V family.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Arria V devices.

Operating Conditions

Arria V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria V devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Arria V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered

I/O Standard	V _{IL}	_{-(DC)} (V)	V _{IH(De}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
i/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	IOH (IIIA)
HSTL-15 Class II	_	V _{REF} – 0.1	$V_{REF} + 0.1$	_	V _{REF} - 0.2	$V_{REF} + 0.2$	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	$V_{REF} + 0.08$	V _{CCIO} + 0.15	V _{REF} – 0.15	$V_{REF} + 0.15$	$0.25 \times V_{CCIO}$	$0.75 \times V_{\text{CCIO}}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	$V_{REF} + 0.08$	V _{CCIO} + 0.15	V _{REF} – 0.15	$V_{REF} + 0.15$	$0.25 \times V_{\text{CCIO}}$	$0.75 \times V_{\text{CCIO}}$	16	-16
HSUL-12	_	V _{REF} - 0.13	$V_{REF} + 0.13$	_	V _{REF} - 0.22	$V_{REF} + 0.22$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		V _{SW}	_{ING(DC)} (V)		$V_{X(AC)}(V)$		V _{SV}	WING(AC) (V)
i/O Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	$V_{\rm CCIO} + 0.6$	$V_{\rm CCIO}/2 - 0.2$	_	V _{CCIO} /2 + 0.2	0.62	$V_{\rm CCIO}$ + 0.6
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{\rm CCIO}$ + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 - 0.15	_	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Transceiver Specifications for Arria V GT and ST Devices

Table 1-26: Reference Clock Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Max	Offic
Supported I/O standards	1.2 V PCML, 1.4 VPCML,	1.5 V PCML, 2.5	V PCML, Differe	ential LVPECL ⁽⁴⁰⁾ ,	HCSL, and LVDS
Input frequency from REFCLK input pins	_	27	_	710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾	_		400	ps
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾	_	_	400	ps
Duty cycle	_	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	300 ⁽⁴²⁾ /2000	mV
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	Ω
V _{ICM} (AC coupled)	_	_	1.2	_	V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV

Send Feedback

⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

⁽⁴¹⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
3yiiiboi/Description	Condition	Min	Тур	Max	Offic
	85-Ω setting	_	85	_	Ω
Differential on-chip termination	100- Ω setting	_	100	_	Ω
resistors	120- Ω setting	_	120	_	Ω
	150- Ω setting	_	150	_	Ω
Intra-differential pair skew	$TX V_{CM} = 0.65 V (AC coupled)$ and slew rate of 15 ps	_	_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode	_	_	180	ps
Inter-transceiver block transmitter channel-to-channel skew ⁽⁵⁵⁾	×N PMA bonded mode	_	_	500	ps

Table 1-30: CMU PLL Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Max	Onit	
Supported data range	0.611	10.3125	Gbps	
fPLL supported data range	611	3125	Mbps	

⁽⁵⁵⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Max	Onit	
Interface speed (PMA direct mode)	50	153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾	MHz	
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36

⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected.

⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

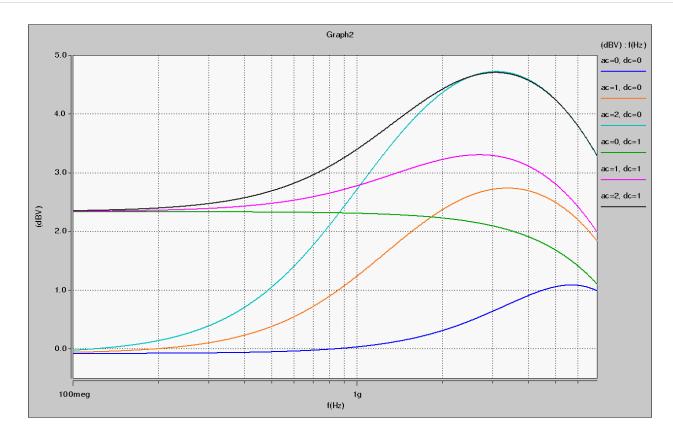
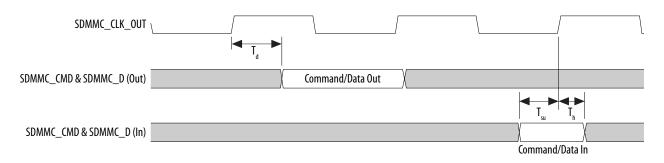



Figure 1-11: SD/MMC Timing Diagram

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
T_{clk}	USB CLK clock period	_	16.67	_	ns
T_d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	_	11	ns
T_{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2	_		ns
T_h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1	_	<u>—</u>	ns

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

POR Delay	Minimum	Maximum	Unit
Standard	100	300	ms

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Max	Unit
t_{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14	_	ns
t_{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t_{JPH}	JTAG port hold time	5	_	ns
$t_{ m JPCO}$	JTAG port clock to output	_	12 ⁽⁹³⁾	ns
t_{JPZX}	JTAG port high impedance to valid output	_	14 ⁽⁹³⁾	ns
t_{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

 $^{^{(92)}}$ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Symbol	Parameter	Minimum	Maximum	Unit
t_{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

AS Configuration Timing

Table 1-68: AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices

The minimum and maximum numbers apply to both the internal oscillator and CLKUSR when either one is used as the clock source for device configuration.

The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in PS Timing Parameters for Arria V Devices table. You can obtain the t_{CF2ST1} value if you do not delay configuration by externally holding <code>nstatus</code> low.

Symbol	Parameter	Minimum	Maximum	Unit
t_{CO}	DCLK falling edge to the AS_DATAO/ASDO output	_	2	ns
t _{SU}	Data setup time before the falling edge on DCLK	1.5	_	ns
t _{DH}	Data hold time after the falling edge on DCLK	0		ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t_{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × CLKUSR period)	_	_
$T_{\rm init}$	Number of clock cycles required for device initialization	8,576	_	Cycles

Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet

- **PS Configuration Timing** on page 1-81
- **AS Configuration Timing**Provides the AS configuration timing waveform.

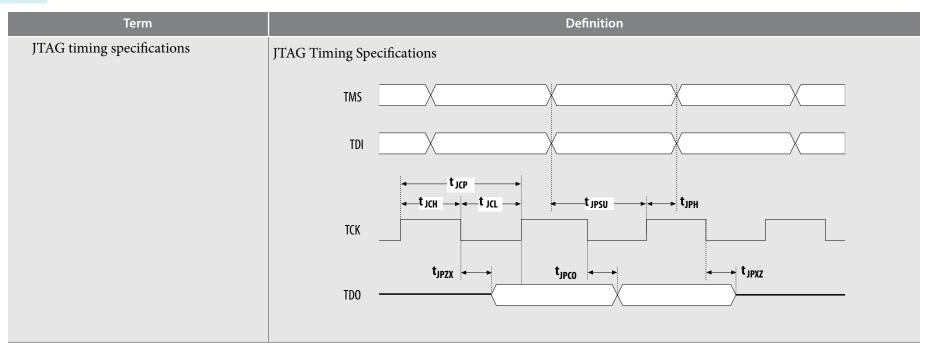
DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
DCLR frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing


Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t_{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nstatus low pulse width	268	1506(103)	μs
t _{CF2ST1}	nconfig high to nstatus high	_	1506(104)	μs

 $^{^{(103)} \ \} You \ can \ obtain \ this \ value \ if \ you \ do \ not \ delay \ configuration \ by \ extending \ the \ nconfig \ or \ nstatus \ low \ pulse \ width.$

Send Feedback

You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

Arria V GX, GT, SX, and ST Device Datasheet **Altera Corporation**

I/O Standard Specifications

The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

Table 2-16: Single-Ended I/O Standards for Arria V GZ Devices

I/O Standard		V _{CCIO} (V)		V _{II}	_(V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
i/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	IOL (IIIA)	IOH (IIIA)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{\rm CCIO}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{\rm CCIO}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	$\begin{array}{c} 0.25 \times \\ V_{\rm CCIO} \end{array}$	$0.75 \times V_{\text{CCIO}}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$\begin{array}{c} 0.35 \times \\ V_{\rm CCIO} \end{array}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	$\begin{array}{c} 0.25 \times \\ V_{\rm CCIO} \end{array}$	$0.75 \times V_{\text{CCIO}}$	2	-2

Table 2-17: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria V GZ Devices

I/O Standard					V _{REF} (V)			V-	rt (V)			
i/O Staildaid	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max			
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$\begin{array}{c} 0.5 \times \\ V_{\rm CCIO} \end{array}$	$0.51 \times V_{\rm CCIO}$	V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04			
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04			
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{\rm CCIO}$	$0.51 \times V_{\rm CCIO}$	$\begin{array}{c} 0.49 \times \\ V_{\rm CCIO} \end{array}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$			

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transc	eiver Speed	Grade 2	Transceiver Speed Grade 3			Unit	
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Offic	
Reference Clock									
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL							
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Input Reference Clock Frequency (CMU PLL) (137)	_	40	_	710	40	_	710	MHz	
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz	

 $^{^{(137)}}$ The input reference clock frequency options depend on the data rate and the device speed grade.

AV-51002 2017.02.10

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transc	Unit			
3yiiiboi/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz	
Reconfiguration clock (mgmt_clk_clk) frequency	_	100	_	125	100	_	125	MHz	

Related Information

Arria V Device Overview

For more information about device ordering codes.

Receiver

Table 2-24: Receiver Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Transceiver Speed Grade 2				Transc	Unit			
	Conditions	Min	Тур	Max	Min	Тур	Max	Offic	
Supported I/O Standards	1.4-V PCML, 1.5-V PCML, 2.5	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Data rate (Standard PCS) (143), (144)	_	600	_	9900	600	_	8800	Mbps	
Data rate (10G PCS) (143), (144)	_	600	_	12500	600	_	10312.5	Mbps	
Absolute V_{MAX} for a receiver pin $^{(145)}$	_	_	_	1.2	_	_	1.2	V	
Absolute V_{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	V	

⁽¹⁴³⁾ The line data rate may be limited by PCS-FPGA interface speed grade.

Altera Corporation Arria V GZ Device Datasheet

 $^{^{(144)}}$ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

⁽¹⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transo	Unit		
3yiiiboi/Description	Conditions	Min Typ Max		Min	Тур	Max		
$\label{eq:maximum peak-to-peak differential} \\ input voltage V_{ID} (diff p-p) before \\ device configuration$	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after	$V_{\text{CCR_GXB}} = 1.0 \text{ V}$ $(V_{\text{ICM}} = 0.75 \text{ V})$	_	_	1.8	_	_	1.8	V
device configuration (146)	$V_{\text{CCR_GXB}} = 0.85 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$	_	_	2.4	_	_	2.4	V
Minimum differential eye opening at receiver serial input pins (147)(148)	_	85	_	_	85	_	_	mV
	85– Ω setting		85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination	100–Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
resistors	120–Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150– Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω

 $^{^{(146)} \ \} The\ maximum\ peak\ to\ peak\ differential\ input\ voltage\ V_{ID}\ after\ device\ configuration\ is\ equal\ to\ 4\times (absolute\ V_{MAX}\ for\ receiver\ pin\ -\ V_{ICM}).$

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

CMU PLL

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transc	Unit		
	Conditions	Min	Тур	Max	Min	Тур	Max	
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} (153)	_	1	_	_	1	_	_	μs
t _{pll_lock} (154)	_		_	10	_	_	10	μs

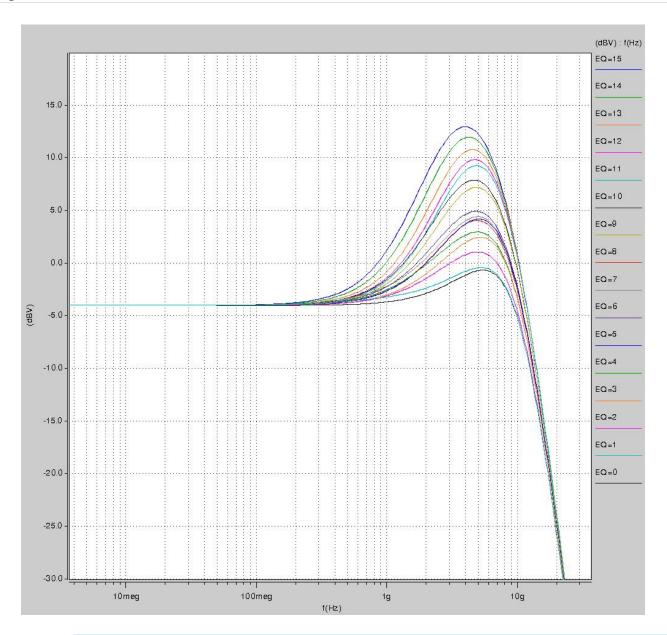
Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices


Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

 $^{^{(153)}~}t_{\mbox{\footnotesize pll_powerdown}}$ is the PLL powerdown minimum pulse width.

⁽¹⁵⁴⁾ t_{pll lock} is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

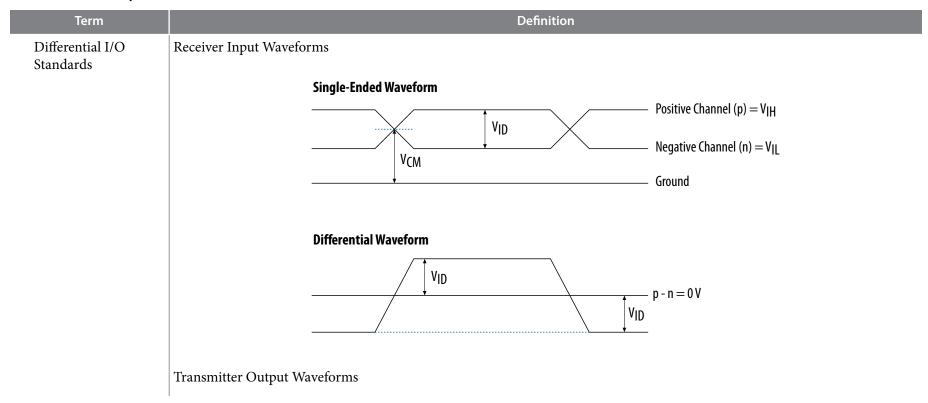
Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)


Altera Corporation Arria V GZ Device Datasheet

Passive Serial Configuration Timing

Figure 2-10: PS Configuration Timing Waveform

Timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.


Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the Device and Pins Option.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Glossary

Table 2-68: Glossary

Term	Definition
$t_{\rm C}$	High-speed receiver and transmitter input and output clock period.
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).
$t_{ m DUTY}$	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
$t_{ m FALL}$	Signal high-to-low transition time (80-20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
$ ule{V_{ICM}}$	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
$\overline{ m V_{IH}}$	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
$ m V_{IL}$	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage

