
E·XFL

Intel - 5AGXBB7D6F40C6N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxbb7d6f40c6n

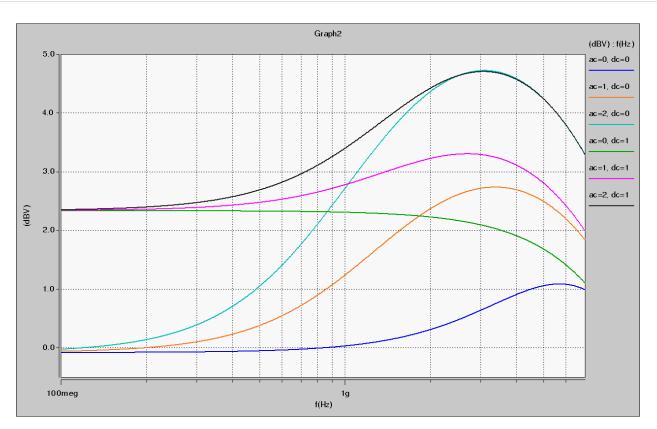
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transc	Unit		
	Condition	Min	Тур	Мах	Min	Тур	Max	Onic
fixedclk clock frequency	PCIe Receiver Detect	—	125	—	—	125	_	MHz
Transceiver Reconfigura- tion Controller IP (mgmt_ clk_clk) clock frequency	—	75	_	125	75	_	125	MHz

Table 1-22: Receiver Specifications for Arria V GX and SX Devices


Sumbol/Doccription	Condition	Transc	eiver Speed G	irade 4	Transc	eiver Speed G	irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards		1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS						
Data rate ⁽²⁸⁾	_	611	_	6553.6	611	_	3125	Mbps
Absolute V_{MAX} for a receiver pin ⁽²⁹⁾	_			1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	—			1.6			1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_			2.2			2.2	V

 ⁽²⁸⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
⁽²⁹⁾ The device cannot tolerate prolonged operation at this absolute maximum.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st			Quar	tus Prime V _{OD} Se	etting			
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	_	10.2	6.09	5.01	4.23	3.61	—	dB
12	_	11.56	6.74	5.51	4.68	3.97	—	dB
13	_	12.9	7.44	6.1	5.12	4.36	—	dB
14	_	14.44	8.12	6.64	5.57	4.76	_	dB
15	_	_	8.87	7.21	6.06	5.14	—	dB

Arria V GX, GT, SX, and ST Device Datasheet

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	_	_	670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
f _{out_ext}	output	–5 speed grade	_	_	622 ⁽⁶³⁾	MHz
		-6 speed grade			500 ⁽⁶³⁾	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)		45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	_	10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	_	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
+ (65)(66)	Input dock and to and ittar	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.15	UI (p-p)
t _{INCCJ} ⁽⁶⁵⁾⁽⁶⁶⁾	Input clock cycle-to-cycle jitter	$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Memory	Mode	Resourc	es Used		Performance		Unit
Memory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	Onit
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	—		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specifications

Table 1-40: High-Speed I/O Specifications for Arria V Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block. When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

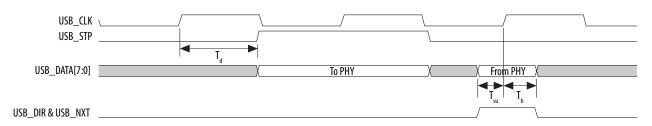
The Arria V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

	Symbol		-I3, -C4		-I5, -C5			-C6			Unit	
	Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Onic
f _{HSCLK_in} (inp Differential I/	out clock frequency) True /O Standards	Clock boost factor W = 1 to $40^{(72)}$	5	_	800	5	_	750	5	_	625	MHz
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I I/O Standards ⁽⁷³⁾	Clock boost factor W = 1 to $40^{(72)}$	5	_	625	5	_	625	5		500	MHz
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I/O Standards ⁽⁷⁴⁾	Clock boost factor W = 1 to $40^{(72)}$	5		420	5	_	420	5	_	420	MHz
f _{HSCLK_OUT} (f _{HSCLK_OUT} (output clock frequency)		5	_	625(75)	5	_	625(75)	5	_	500 ⁽⁷⁵⁾	MHz
Transmitter	True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J =3 to $10^{(76)}$	(77)		1250	(77)		1250	(77)		1050	Mbps

⁽⁷³⁾ This applies to DPA and soft-CDR modes only.

⁽⁷²⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

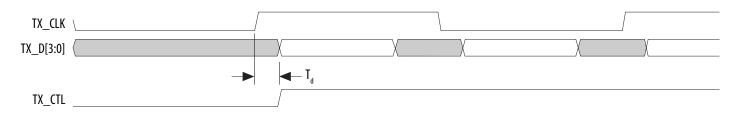

⁽⁷⁴⁾ This applies to non-DPA mode only.

⁽⁷⁵⁾ This is achieved by using the LVDS clock network.

 $^{^{(76)}}$ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽⁷⁷⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Figure 1-12: USB Timing Diagram



Ethernet Media Access Controller (EMAC) Timing Characteristics

Table 1-56: Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Arria V Devices

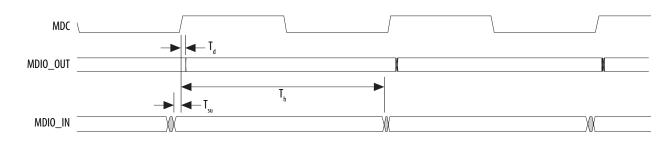

Symbol	Description	Min	Тур	Max	Unit
T _{clk} (1000Base-T)	TX_CLK clock period	_	8	_	ns
T _{clk} (100Base-T)	TX_CLK clock period	—	40		ns
T _{clk} (10Base-T)	TX_CLK clock period	_	400		ns
T _{dutycycle}	TX_CLK duty cycle	45		55	%
T _d	TX_CLK to TXD/TX_CTL output data delay	-0.85		0.15	ns

Figure 1-13: RGMII TX Timing Diagram

Figure 1-15: MDIO Timing Diagram

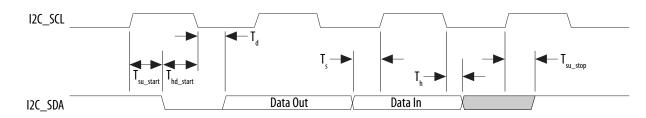

I²C Timing Characteristics

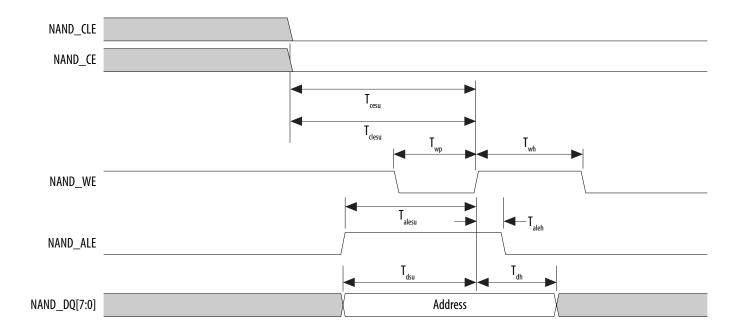
Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast	Mode	Unit
Symbol	Description	Min	Max	Min	Max	Onic
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs
T _{clkhigh}	SCL high time	4.7	—	0.6		μs
T _{clklow}	SCL low time	4	_	1.3		μs
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs

Figure 1-16: I²C Timing Diagram

NAND Timing Characteristics

Table 1-60: NAND ONFI 1.0 Timing Requirements for Arria V Devices


The NAND controller supports Open NAND FLASH Interface (ONFI) 1.0 Mode 5 timing as well as legacy NAND devices. This table lists the requirements for ONFI 1.0 mode 5 timing. The HPS NAND controller can meet this timing by programming the c4 output of the main HPS PLL and timing registers provided in the NAND controller.

Symbol	Description	Min	Max	Unit
T _{wp} ⁽⁸⁹⁾	Write enable pulse width	10	_	ns
T _{wh} ⁽⁸⁹⁾	Write enable hold time	7		ns
T _{rp} ⁽⁸⁹⁾	Read enable pulse width	10		ns
T _{reh} ⁽⁸⁹⁾	Read enable hold time	7		ns
T _{clesu} ⁽⁸⁹⁾	Command latch enable to write enable setup time	10		ns
T _{cleh} ⁽⁸⁹⁾	Command latch enable to write enable hold time	5		ns
T _{cesu} ⁽⁸⁹⁾	Chip enable to write enable setup time	15		ns
T _{ceh} ⁽⁸⁹⁾	Chip enable to write enable hold time	5		ns
T _{alesu} ⁽⁸⁹⁾	Address latch enable to write enable setup time	10		ns
T _{aleh} ⁽⁸⁹⁾	Address latch enable to write enable hold time	5		ns
T _{dsu} ⁽⁸⁹⁾	Data to write enable setup time	10		ns

⁽⁸⁹⁾ Timing of the NAND interface is controlled through the NAND configuration registers.

Figure 1-18: NAND Address Latch Timing Diagram

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

	Available	Minimum	Fast Model		Slow Model					- Unit
	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	-13	-15	Onic	
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

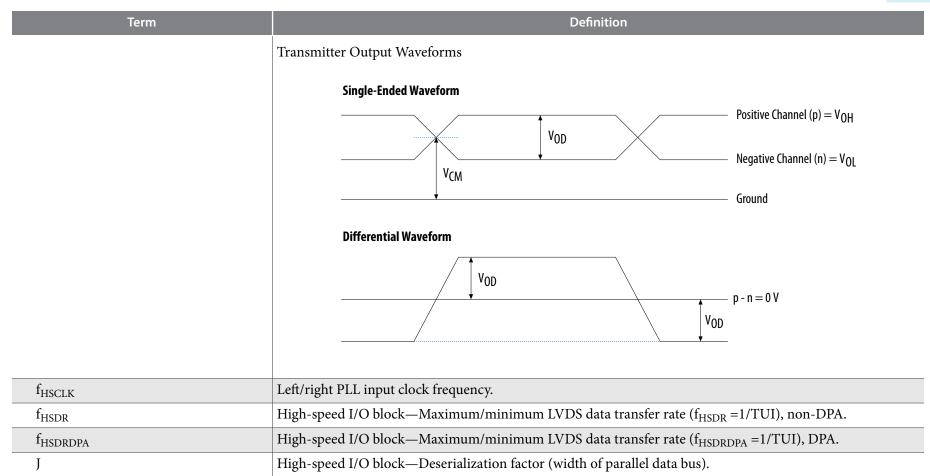
Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.


1-88 Glossary			AV-5100 2017.02.1
Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge delay	50	ps
D _{OUTBUF}	Kising and/or failing euge delay	100	ps
		150	ps

Glossary

Table 1-78: Glossary

Term	Definition	
Differential I/O standards	Receiver Input Waveforms	
	Single-Ended Waveform	Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground
	Differential Waveform	p - n = 0 V

Symbol	Description	Conditions	Calibration Ac	Unit	
Symbol	Description	Conditions	C3, I3L	C4, I4	Onic
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34- Ω and 40- Ω setting)			±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	$V_{CCIO} = 1.2 V$	±15	±15	%
50-Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	%
60- Ω and 120- Ω $R_{\rm T}$	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%

Table 2-11: OCT Without Calibration Resistance Tolerance Specifications for Arria V GZ Devices

Symbol	Description	Conditions	Resistance	Unit	
		Conditions	C3, I3L	C4, I4	Unit
- 8	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±40	±40	%

Symbol	Description	V _{CCIO} (V)	Typical	Unit
		3.0	0.0297	
		2.5	0.0344	
dR/dV	OCT variation with voltage without re-calibration	1.8	0.0499	%/mV
		1.5	0.0744	
		1.2	0.1241	
		3.0	0.189	
		2.5	0.208	
dR/dT	OCT variation with temperature without re-calibration	1.8	0.266	%/°C
		1.5	0.273	
		1.2	0.317	

Pin Capacitance

Table 2-13: Pin Capacitance for Arria V GZ Devices

Symbol	Description	Maximum	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	6	pF

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
	VCO post-divider L = 2	8000		12500	8000	_	10312.5	Mbps
Supported data rate range	L = 4	4000		6600	4000		6600	Mbps
	$L = 8^{(155)}$	2000		3300	2000	_	3300	Mbps
t _{pll_powerdown} ⁽¹⁵⁶⁾	_	1			1			μs
t _{pll_lock} ⁽¹⁵⁷⁾				10	_		10	μs

Related Information

- Arria V Device Overview For more information about device ordering codes.
- Transceiver Clocking in Arria V Devices For more information about clocking ATX PLLs.
- **Dynamic Reconfiguration in Arria V Devices** For more information about reconfiguring ATX PLLs.

Fractional PLL

Table 2-28: Fractional PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

⁽¹⁵⁵⁾ This clock can be further divided by central or local clock dividers making it possible to use ATX PLL for data rates < 1 Gbps. For more information about ATX PLLs, refer to the Transceiver Clocking in Arria V Devices chapter and the Dynamic Reconfiguration in Arria V Devices chapter.

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width.

⁽¹⁵⁷⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Mode ⁽¹⁶⁴⁾	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
Register	2	C3, I3L core speed grade	9.9	9	7.92	7.2	4.9	4.,5	3.92	3.6
	3	C4, I4 core speed grade	8.8	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Related Information

Operating Conditions on page 2-1

10G PCS Data Rate

Table 2-31: 10G PCS Approximate Maximum Data Rate (Gbps) for Arria V GZ Devices

Mode ⁽¹⁶⁵⁾	Transceiver Speed	PMA Width	64	40	40	40	32	32
Mode	Grade	PCS Width	64	66/67	50	40	64/66/67	32
FIFO	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92
Register	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽¹⁶⁵⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

t_{ARESET}

Symbol	Parameter	Min	Тур	Max	Unit
f _{OUT} ⁽¹⁶⁹⁾	Output frequency for an internal global or regional clock (C3, I3L speed grade)	—	—	650	MHz
IOUT	Output frequency for an internal global or regional clock (C4, I4 speed grade)	—		580	MHz
f _{OUT_EXT} ⁽¹⁶⁹⁾	Output frequency for an external clock output (C3, I3L speed grade)	_	_	667	MHz
IOUT_EXT	Output frequency for an external clock output (C4, I4 speed grade)	_	_	533	MHz
toutduty	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
f _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/ delays)	_	_	1	ms
	PLL closed-loop low bandwidth	_	0.3		MHz
f_{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (170)	_	4		MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps

10

_

Minimum pulse width on the areset signal

ns

 $^{^{(169)}}$ This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

⁽¹⁷⁰⁾ High bandwidth PLL settings are not supported in external feedback mode.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$	—	—
		DCLK period		
t _{CD2UM} C	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (209)	_	_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57 ٠
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Arria V GZ Device Datasheet

⁽²⁰⁸⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽²⁰⁹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output		4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	—	ns
t _H	Data hold time after falling edge on DCLK	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode (216)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × Clkusr period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.