Intel - 5AGXFA5H4F35I3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfa5h4f35i3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCL_GXBL}	GX and SX speed grades—clock network power (left side)	1 08/1 12	1 1/1 15(6)	1 14/1 18	V
V _{CCL_GXBR}	GX and SX speed grades—clock network power (right side)	1.00/ 1.12	1.1/1.13	1.14/1.10	v
V _{CCL_GXBL}	GT and ST speed grades—clock network power (left side)	117	1 20	1 22	V
V _{CCL_GXBR}	GT and ST speed grades—clock network power (right side)	1.17	1.20	1.23	v

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

HPS Power Supply Operating Conditions

Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS core	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC_HPS}	voltage and periphery circuitry power supply	-I3	1.12	1.15	1.18	V

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

				V _{CCIO} (V)											
Parameter	Symbol	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

OCT Calibration Accuracy Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 1-8: OCT Calibration Accuracy Specifications for Arria V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (\/)	Ca	су	Unit	
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80- Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	$V_{CCIO} = 1.2$	±15	±15	±15	%
50-Ω R_T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R _T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onit	
Run length	—	—	_	200	—		200	UI	
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Refer to C Gain and Response G	TLE Respons DC Gain for at Data Rates ain for Arria	e at Data Rat Arria V GX, s ≤ 3.25 Gbps V GX, GT, S2	es > 3.25 Gbj GT, SX, and across Supp K, and ST De	ps across Sup ST Devices a orted AC Gai vices diagram	ported AC nd CTLE n and DC ns.	dB	

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	Transceiver Speed Grade 4			Transceiver Speed Grade 6		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Ont
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611		6553.6	611	_	3125	Mbps
V _{OCM} (AC coupled)	_	_	650	_		650	_	mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	_	85	_		85	_	Ω
Differential on-chip	100- Ω setting	—	100	—	_	100	_	Ω
termination resistors	120- Ω setting		120			120		Ω
	150-Ω setting	_	150	—		150	_	Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps	—	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode	_	_	180	_	—	180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

DLL Frequency Range Specifications

Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.

Number of DQS Delay Buffer	–I3, –C4	-I5, -C5	-C6	Unit
2	40	80	80	ps

Figure 1-20: NAND Data Read Timing Diagram

ARM Trace Timing Characteristics

Table 1-61: ARM Trace Timing Requirements for Arria V Devices

Most debugging tools have a mechanism to adjust the capture point of trace data.

Description	Min	Мах	Unit
CLK clock period	12.5	_	ns
CLK maximum duty cycle	45	55	%
CLK to D0 –D7 output data delay	-1	1	ns

UART Interface

The maximum UART baud rate is 6.25 megasymbols per second.

GPIO Interface

The minimum detectable general-purpose I/O (GPIO) pulse width is 2 µs. The pulse width is based on a debounce clock frequency of 1 MHz.

1-80 AS Configuration Timing

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$ DCLK period	—	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + ($T_{init} \times CLKUSR$ period)		
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

Related Information

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

AS Configuration Timing

Table 1-68: AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices

The minimum and maximum numbers apply to both the internal oscillator and CLKUSR when either one is used as the clock source for device configuration.

The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in PS Timing Parameters for Arria V Devices table. You can obtain the t_{CF2ST1} value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to the AS_DATA0/ASDO output	—	2	ns
t _{SU}	Data setup time before the falling edge on DCLK	1.5		ns
t _{DH}	Data hold time after the falling edge on DCLK	0	_	ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK period}$	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + ($T_{init} \times CLKUSR$ period)	_	—
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

1-88	Glossary			AV-5100 2017.02.1
	Symbol	Parameter	Typical	Unit
		Rising and/or falling edge delay	0 (default)	ps
Л	·		50	ps
D	OUTBUF		100	ps
			150	ps

Glossary

Table 1-78: Glossary

Term	Definition	
Differential I/O standards	Receiver Input Waveforms	
	Single-Ended Waveform	Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL}
		Ground
	Differential Waveform	
		p - n = 0 V

AV-51002

Transceiver Power Supply Requirements

Table 2-7: Transceiver Power Supply Voltage Requirements for Arria V GZ Devices

Conditions	VCCR_GXB and VCCT_GXB ⁽¹²²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	1.05			
• Data rate > 10.3 Gbps.				
• DFE is used.				
If ANY of the following conditions are true ⁽¹²³⁾ :	1.0	3.0		
 ATX PLL is used. Data rate > 6.5Gbps. DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used. 			1.5	V
If ALL of the following conditions are true:	0.85	2.5		
 ATX PLL is not used. Data rate ≤ 6.5Gbps. DFE, AEQ, and EyeQ are not used. 				

DC Characteristics

Supply Current

Standby current is the current drawn from the respective power rails used for power budgeting.

Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

⁽¹²²⁾ If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to 0.85 V, they can be shared with the VCC core supply.

⁽¹²³⁾ Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_I = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	_	30	μΑ

I/O Standard Specifications

The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

Table 2-16: Single-Ended I/O Standards for Arria V GZ Devices

1/O Standard	V _{CCIO} (V)			V _{IL} (V)		V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	Ι (mΔ)	Ι (m Λ)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Мах	Min	10L (1114)	ю <u>н</u> (шлл)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 imes V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{\rm CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 2-17: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria V GZ Devices

I/O Standard	V _{ccio} (V)			V _{REF} (V)			V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	0.51 × V _{CCIO}	$0.49 \times V_{CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	
SSTL-12 Class I, II	1.14	1.20	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	0.49 × V _{CCIO}	0.5 × VCCIO	$0.51 \times V_{CCIO}$	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.53 \times V_{ m CCIO}$	_	V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$			_	

Table 2-18: Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria V GZ Devices

I/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	L.(mA)	I. (mA)
	Min	Max	Min	Max	Мах	Min	Max	Min	י _{סן} (וווא)	
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7

Sumbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onit
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	—	600		_	600	_	mV
Varia (AC and DC coupled)	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth	—	600		_	600	_	mV
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth	—	700		—	700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth	—	700		_	700	_	mV
t _{LTR} ⁽¹⁴⁹⁾	—		—	10	—	—	10	μs
t _{LTD} ⁽¹⁵⁰⁾	—	4	—		4	_	_	μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	—	_	4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	—	15	—		15	_	_	μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16			16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	Onit
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} ⁽¹⁵³⁾	—	1			1	_		μs
t _{pll_lock} ⁽¹⁵⁴⁾	_			10			10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

Altera Corporation

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width. (153)

⁽¹⁵⁴⁾ $t_{\text{pll} \text{ lock}}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transo	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	
	VCO post-divider L = 2	8000		12500	8000	_	10312.5	Mbps
Supported data rate range	L = 4	4000	_	6600	4000	_	6600	Mbps
	$L = 8^{(155)}$	2000	_	3300	2000	_	3300	Mbps
t _{pll_powerdown} ⁽¹⁵⁶⁾	_	1	—	_	1	_		μs
t _{pll_lock} ⁽¹⁵⁷⁾	_	_	_	10		_	10	μs

Related Information

- Arria V Device Overview For more information about device ordering codes.
- Transceiver Clocking in Arria V Devices For more information about clocking ATX PLLs.
- **Dynamic Reconfiguration in Arria V Devices** For more information about reconfiguring ATX PLLs.

Fractional PLL

Table 2-28: Fractional PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

⁽¹⁵⁵⁾ This clock can be further divided by central or local clock dividers making it possible to use ATX PLL for data rates < 1 Gbps. For more information about ATX PLLs, refer to the Transceiver Clocking in Arria V Devices chapter and the Dynamic Reconfiguration in Arria V Devices chapter.

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width.

⁽¹⁵⁷⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.										
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)						
	0 (166)	0	32	640						
	1(166)	20	33	660						
	2(166)	40	34	680						
	3(166)	60	35	700						
	4 ⁽¹⁶⁶⁾	80	36	720						
	5 ⁽¹⁶⁶⁾	100	37	740						
	6	120	38	760						
V_{OD} differential peak to peak typical	7	140	39	780						
	8	160	40	800						
	9	180	41	820						
	10	200	42	840						
	11	220	43	860						
	12	240	44	880						
	13	260	45	900						
	14	280	46	920						

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Max	Unit
t _{INCCJ} ⁽¹⁷¹⁾ , ⁽¹⁷²⁾	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	—	0.15	UI (p-p)
	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
t _{outpj_dc} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	_		17.5	mUI (p-p)
t _{FOUTPJ_DC} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_		$25^{(176)},$ 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL (f _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)			250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			25 ⁽¹⁷⁶⁾ , 17.5 ⁽¹⁷⁴⁾	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

2-42 Memory Block Specifications

Modo	Performar	nce		Unit	
Mode	C3, I3L	C4	14		
One sum of two 27×27	380	300	290	MHz	
One sum of two 36×18	380	380 300		MHz	
One complex 18×18	400	400 350		MHz	
One 36 × 36	380	300		MHz	
Modes using Three DSP Blocks					
One complex 18×25	340	275	265	MHz	
Modes using Four DSP Blocks					
One complex 27×27	350	310		MHz	

Memory Block Specifications

Table 2-36: Memory Block Performance Specifications for Arria V GZ Devices

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

Momony	Mada	Resources Used		Performance				Unit
Wentory	moue	ALUTs	Memory	C3	C4	I3L	14	Unit
MLAB	Single port, all supported widths	0	1	400	315	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	400	315	400	315	MHz
	Simple dual-port, x16 depth (178)	0	1	533	400	533	400	MHz
	ROM, all supported widths	0	1	500	450	500	450	MHz

⁽¹⁷⁸⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

JTAG Configuration Specifications

Table 2-54: JTAG Timing Parameters and Values for Arria V GZ Devices	;
--	---

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 (203)		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		11 (204)	ns
t _{JPZX}	JTAG port high impedance to valid output		14 (204)	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Arria V GZ Device Datasheet

Altera Corporation

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

⁽²⁰⁴⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{IPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

Date	Version	Changes
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53.
February 2014	3.7	Updated Table 28.
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications".
August 2013	3.5	Updated Table 28.
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28.
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9.
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage".
December 2012	3.0	Initial release.

