
Intel - 5AGXFB3H4F35C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfb3h4f35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		$V_{IL(AC)}(V)$ $V_{IH(AC)}(V)$		V _{OL} (V) V _{OH} (V)		I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	—	V _{REF} – 0.2	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	—	V _{REF} - 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	$V_{REF} + 0.22$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$		_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard	V _{CCIO} (V)		V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Мах	Min	Тур	Мах	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	$V_{CCIO} + 0.6$	V _{CCIO} /2 – 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	$V_{CCIO} + 0.6$	V _{CCIO} /2 – 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Memory	Mode	Resourc	es Used		Performance		Unit
Memory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	Ont
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	—		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Parameter	Clock Network	Symbol	-I3,	-C4	–15,	-C5	-(6	Unit
		Symbol	Min	Max	Min	Max	Min	Max	Ont
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	6	3	9	0	9	4	ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks			20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for R_S OCT/ R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of octusrclk clock cycles required for oct code to shift out		32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5	_	ns

HPS Clock Performance

Table 1-48: HPS Clock Performance for Arria V Devices

Symbol/Description	-I3	-C4	–C5, –I5	-C6	Unit
mpu_base_clk (microprocessor unit clock)	1050	925	800	700	MHz
main_base_clk (L3/L4 interconnect clock)	400	400	400	350	MHz
h2f_user0_clk	100	100	100	100	MHz
h2f_user1_clk	100	100	100	100	MHz
h2f_user2_clk	200	200	200	160	MHz

HPS PLL Specifications

HPS PLL VCO Frequency Range

Table 1-49: HPS PLL VCO Frequency Range for Arria V Devices

Description	Speed Grade	Minimum	Maximum	Unit
VCO range	-C5, -I5, -C6	320	1,600	MHz
	-C4	320	1,850	MHz
	-I3	320	2,100	MHz

HPS PLL Input Clock Range

The HPS PLL input clock range is 10 – 50 MHz. This clock range applies to both HPS_CLK1 and HPS_CLK2 inputs.

Related Information

Clock Select, Booting and Configuration chapter

Provides more information about the clock range for different values of clock select (CSEL).

1-80 AS Configuration Timing

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLк period	_	
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × CLKUSR period)		_
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

Related Information

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

AS Configuration Timing

Table 1-68: AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices

The minimum and maximum numbers apply to both the internal oscillator and CLKUSR when either one is used as the clock source for device configuration.

The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in PS Timing Parameters for Arria V Devices table. You can obtain the t_{CF2ST1} value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to the AS_DATA0/ASDO output		2	ns
t _{SU}	Data setup time before the falling edge on DCLK	1.5	_	ns
t _{DH}	Data hold time after the falling edge on DCLK	0		ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × Clkusr period)		_
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)		
	A1	71,015,712	439,960		
	A3	71,015,712	439,960		
	A5	101,740,800	446,360		
Arria V GX	A7	101,740,800	446,360		
Allia V GA	B1	137,785,088	457,368		
	B3	137,785,088	457,368		
	B5	185,915,808	463,128		
	B7	185,915,808	463,128		
	C3	71,015,712	439,960		
Arria V GT	C7	101,740,800	446,360		
Allia v GI	D3	137,785,088	457,368		
	D7	185,915,808	463,128		
Arria V SX	B3	185,903,680	450,968		
Allia v SA	B5	185,903,680	450,968		
Arria V ST	D3	185,903,680	450,968		
7111a V 51	D5	185,903,680	450,968		

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹² Available		Minimum	Fast Model		Slow Model				Unit	
) Settings	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	-13	-15	Onit	
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

2-2 Absolute Maximum Ratings

Lower number refers to faster speed grade.

L = Low power devices.

Transceiver Speed Grade	Core Speed Grade					
Transceiver Speeu Graue	C3	C4	I3L	14		
2	Yes	_	Yes	-		
3		Yes		Yes		

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V GZ devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions other than those listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2-2: Absolute Maximum Ratings for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V

2-4 Recommended Operating Conditions

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% of the duty cycle.

For example, a signal that overshoots to 3.95 V can be at 3.95 V for only $\sim 21\%$ over the lifetime of the device; for a device lifetime of 10 years, the overshoot duration amounts to ~ 2 years.

Table 2-4: Maximum Allowed Overshoot During Transitions for Arria V GZ Devices
--

Symbol	Description	Condition (V)	Overshoot Duration as $\% @ T_J = 100^{\circ}C$	Unit
		3.8	100	%
		3.85	64	%
		3.9	36	%
		3.95	21	%
Vi (AC)	AC input voltage	4	12	%
		4.05	7	%
		4.1	4	%
		4.15	2	%
		4.2	1	%

Recommended Operating Conditions

Table 2-5: Recommended Operating Conditions for Arria V GZ Devices

Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CC}	Core voltage and periphery circuitry power supply (115)	_	0.82	0.85	0.88	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁵⁾ The V_{CC} core supply must be set to 0.9 V if the Partial Reconfiguration (PR) feature is used.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2 Transceiver Speed G Min Typ Max Min Typ		Grade 3	Unit			
Symbol/Description	Conditions			Min	Тур	Max	Onit	
Reference Clock								
Supported I/O StandardsDedicated reference clock1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL and HCSL					PECL, LVDS,			
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2			Transceiver Speed Grade 3			
Symbol/Description	Conditions	Min Typ Max			Min	Тур	Max	Unit	
fixedclk clock frequency	PCIe Receiver Detect	-	100 or 125	_	_	100 or 125	_	MHz	
Reconfiguration clock (mgmt_clk_ clk) frequency	—	100	_	125	100	_	125	MHz	

Related Information

Arria V Device Overview

For more information about device ordering codes.

Receiver

Table 2-24: Receiver Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2 Min Typ Max		Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min			Min	Тур	Мах	
Supported I/O Standards	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Data rate (Standard PCS) ⁽¹⁴³⁾ , ⁽¹⁴⁴⁾	—	600	_	9900	600	_	8800	Mbps
Data rate (10G PCS) (143), (144)	_	600		12500	600	_	10312.5	Mbps
Absolute V_{MAX} for a receiver pin $^{(145)}$	—	_	_	1.2	_	_	1.2	V
Absolute $\mathrm{V}_{\mathrm{MIN}}$ for a receiver pin	_	-0.4		_	-0.4	_		V

⁽¹⁴³⁾ The line data rate may be limited by PCS-FPGA interface speed grade.

⁽¹⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

⁽¹⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

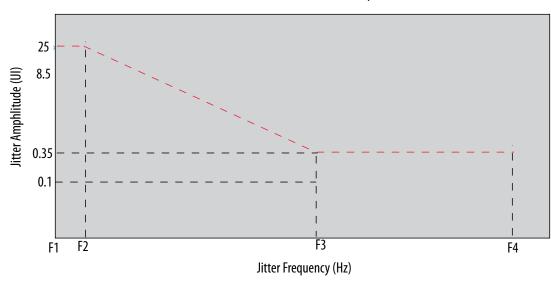
Symbol/Description	Transceiver Speed Grade 2			d Grade 2	Transc	- Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	
	DC gain setting = 0		0	_	—	0	_	dB
	DC gain setting = 1	—	2	_		2	_	dB
Programmable DC gain	DC gain setting = 2		4			4	_	dB
	DC gain setting = 3	—	6	_	—	6	—	dB
	DC gain setting = 4	_	8	—	_	8	—	dB

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter


Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	pol/Description Conditions Transceiver Speed Grade 2		Transceiver Speed Grade 3			Unit			
Symbol/Description	Conditions	Min Typ Max		Мах	Min	Тур	Мах	Onit	
Supported I/O Standards	1.4-V and 1.5-V PCML								
Data rate (Standard PCS)	—	600	_	9900	600	_	8800	Mbps	
Data rate (10G PCS)	_	600		12500	600	_	10312.5	Mbps	

Figure 2-4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate ≥ 1.25 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Table 2-45: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate ≥ 1.25 Gbps

Jitter Fred	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit
4	120	128	ps

Memory Output Clock Jitter Specifications

Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

Clock Network	Parameter	Symbol	С3,	I3L	C4, I4		- Unit
CIOCK NELWOIK	ralameter	Symbol	Min	Мах	Min	Мах	Onic
	Clock period jitter	t _{JIT(per)}	-55	55	-55	55	ps
Regional	Regional Cycle-to-cycle period jitter		-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	-90	90	-90	90	ps
	Clock period jitter	t _{JIT(per)}	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-60	60	-70	70	ps
	Duty cycle jitter	t _{JIT(duty)}	-45	45	-56	56	ps

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} (219)	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		s
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}		s
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (221)	_	—

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

2-76 Glossary	2-76	Glossary
---------------	------	----------

Term	Definition						
R _L	Receiver differential input discrete resistor (external to the Arria V GZ device).						
SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:						
	Bit Time						
	0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)						
Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard $\frac{V_{\text{KEF}}}{V_{\text{REF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}}$						

Date	Version	Changes
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53.
February 2014	3.7	Updated Table 28.
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications".
August 2013	3.5	Updated Table 28.
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28.
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9.
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage".
December 2012	3.0	Initial release.

