E·XFL

Intel - 5AGXFB3H4F40I5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2014.10	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfb3h4f40i5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V _{CCIO} I/O buffers power supply		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
	1/O buffers newer supply	1.8 V	1.71	1.8	1.89	V
	1/O bullets power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
	-	1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V _O	Output voltage	_	0	_	V _{CCIO}	V
T	Operating junction temperature	Commercial	0	_	85	°C
1 _J	Operating junction temperature	Industrial	-40	_	100	°C
+ (4)	Power supply ramp time	Standard POR	200 µs	_	100 ms	_
"RAMP"	Power supply ramp time	Fast POR	200 µs	_	4 ms	_

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁴⁾ This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
V _{CC_AUX_SHARED}	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Symbol/Description	Condition -	Transceiver Speed Grade 4		Transceiver Speed Grade 6			Unit	
		Min	Тур	Max	Min	Тур	Max	Onic
Inter-transceiver block transmitter channel-to- channel skew ⁽³⁹⁾	×N PMA bonded mode			500		_	500	ps

Table 1-24: CMU PLL Specifications for Arria V GX and SX Devices

Symbol/Description	Transceiver Speed Grade 4		Transceiver S	peed Grade 6	Unit	
Symbol/Description	Min	Мах	Min	Мах	Ont	
Supported data range	611	6553.6	611	3125	Mbps	
fPLL supported data range	611	3125	611	3125	Mbps	

Table 1-25: Transceiver-FPGA Fabric Interface Specifications for Arria V GX and SX Devices

Symbol/Description	Transceiver Spee	ed Grade 4 and 6	Unit	
Symbol Description	Min	Max		
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates \leq 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36
- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines Provides more information about the power supply connection for different data rates.

⁽³⁹⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

Symbol/Description	Condition	Т	Unit		
Symbol/Description	Condition	Min	Тур	Мах	Onit
$t_{LTD_manual}^{(51)}$		4	_	_	μs
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	_	—	μs
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100, 125, 200, 250, 300, 500, and 1000			ppm
Run length	_		_	200	UI
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gand DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria GX, GT, SX, and ST Devices diagrams.			

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit		
	Condition	Min	Тур	Max	onit
Supported I/O standards	1.5 V PCML				
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps
V _{OCM} (AC coupled)	_		650		mV
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{IN}		-3 speed grade	5	—	800 ⁽⁶¹⁾	MHz
	Input clock fraguency	-4 speed grade	5		800 ⁽⁶¹⁾	MHz
IIN	input clock inequency	–5 speed grade	5	_	750 ⁽⁶¹⁾	MHz
Symbol f _{IN} Input closed f _{INPFD} Integer in phase free f _{FINPFD} Fractionar PFD f _{VCO} ⁽⁶²⁾ t _{EINDUTY} Input clorinput dute f _{OUT}		-6 speed grade	5		625(61)	MHz
f _{INPFD}	Integer input clock frequency to the phase frequency detector (PFD)	_	5	_	325	MHz
f _{fINPFD}	Fractional input clock frequency to the PFD		50	_	160	MHz
f _{VCO} ⁽⁶²⁾	PLL voltage-controlled oscillator (VCO) operating range	-3 speed grade	600	—	1600	MHz
		-4 speed grade	600	_	1600	MHz
		–5 speed grade	600		1600	MHz
		-6 speed grade	600		1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	_	40		60	%
		-3 speed grade	_	_	500 ⁽⁶³⁾	MHz
£	Output frequency for internal global or	-4 speed grade	—	—	500 ⁽⁶³⁾	MHz
LOUT	regional clock	-5 speed grade	_	_	500 ⁽⁶³⁾	MHz
		-6 speed grade	_	_	400 ⁽⁶³⁾	MHz

⁽⁶¹⁾ This specification is limited in the Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽⁶²⁾ The VCO frequency reported by the Quartus Prime software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽⁶³⁾ This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
^L FOUTPJ_DC	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
LOUTCCJ_DC	output in integer PLL	F _{OUT} < 100 MHz	_		17.5	mUI (p-p)
4 (67)	Cycle-to-cycle jitter for dedicated clock output in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
FOUTCCJ_DC		$F_{OUT} < 100 \text{ MHz}$	—		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
(67)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
OUTPJ_IO	regular I/O in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
LEOUTCCJ_IO	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Daramotor	Clock Notwork	Symbol	-I3,	-C4	–15,	-C5	_(6	Unit
Falametei		Symbol	Min	Max	Min	Max	Min	Max	Onic
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	63		90		94		ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for $R_{\rm S}$ OCT/R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5		ns

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast I	Mode	Unit	
Symbol	Description	Min	Max	Min	Max	Ont	
T _{clk}	Serial clock (SCL) clock period	10	—	2.5		μs	
T _{clkhigh}	SCL high time	4.7	—	0.6		μs	
T _{clklow}	SCL low time	4	—	1.3		μs	
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1		μs	
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T _d	SCL to SDA output data delay	—	0.2		0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6		μs	
T _{hd_start}	Hold time for a repeated start condition	4	_	0.6		μs	
T _{su_stop}	Setup time for a stop condition	4	_	0.6	_	μs	

Figure 1-18: NAND Address Latch Timing Diagram

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit		
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns		
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns		

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

1-94 Document Revision History

Term	Definition
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor

Document Revision History

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications in Receiver Specifications for Arria V GX and SX Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices PS Timing Parameters for Arria V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Arria V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Arria V Devices table.

1-96 Document Revision History

Date	Version	Changes
June 2015	2015.06.16	• Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		True mini-LVDS output standard: data rates of up to 400 Mbps
		• Added note in the condition for Transmitter—Emulated Differential I/O Standards f _{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		• Updated T _h location in I ² C Timing Diagram.
		 Updared T_{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t_{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		 FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

1-100 Document Revision History

Date	Version	Changes
November 2012	3.0	 Updated Table 2, Table 4, Table 9, Table 14, Table 16, Table 17, Table 20, Table 21, Table 25, Table 29, Table 36, Table 56, Table 57, and Table 60. Removed table: Transceiver Block Jitter Specifications for Arria V Devices. Added HPS information: Added "HPS Specifications" section. Added Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, and Table 50. Added Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19. Updated Table 3 and Table 5.
October 2012	2.4	 Updated Arria V GX V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, and V_{CCL_GXBL/R} minimum and maximum values, and data rate in Table 4. Added receiver V_{ICM} (AC coupled) and V_{ICM} (DC coupled) values, and transmitter V_{OCM} (AC coupled) and V_{OCM} (DC coupled) values in Table 20 and Table 21.
August 2012	2.3	Updated the SERDES factor condition in Table 30.
July 2012	2.2	 Updated the maximum voltage for V_I (DC input voltage) in Table 1. Updated Table 20 to include the Arria V GX -I3 speed grade. Updated the minimum value of the fixedclk clock frequency in Table 20 and Table 21. Updated the SERDES factor condition in Table 30. Updated Table 50 to include the IOE programmable delay settings for the Arria V GX -I3 speed grade.
June 2012	2.1	Updated V _{CCR_GXBL/R} , V _{CCT_GXBL/R} , and V _{CCL_GXBL/R} values in Table 4.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CCPT}	Power supply for programmable power technology	—	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology		2.375	2.5	2.625	V
V _{CCPD} (116	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
)	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply		2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply		1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply		1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply		2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCA} _	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD} FPLL	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (117	Battery back-up power supply (For design security volatile key register)		1.2		3.0	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.
Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁶⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.

⁽¹¹⁷⁾ If you do not use the design security feature in Arria V GZ devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Arria V GZ power-on-reset (POR) circuitry monitors V_{CCBAT}. Arria V GZ devices do not exit POR if V_{CCBAT} is not powered up.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit	
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit	
Reference Clock									
Supported I/O Standards	Dedicated reference clock pin	Dedicated reference clock and HCSL 1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS,							
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40		710	40		710	MHz	
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	-	100		710	100		710	MHz	

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

2-74	Glossary		AV-51002 2017.02.10
	Term	Denition	
		Single-Ended Waveform Positive Channel VOD VCM Negative Channel	
		Differential Waveform VOD VOD VOD VOD	
f _H	ISCLK	Le and right PLL input clock frequency.	
f _H	ISDR	High-speed I/O blockMaximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.	
f _H	ISDRDPA	High-speed I/O blockMaximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.	
J		High-speed I/O blockDeserialization factor (width of parallel data bus).	

