Intel - 5AGXFB5H4F35I3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	19811
Number of Logic Elements/Cells	420000
Total RAM Bits	23625728
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfb5h4f35i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

ia V GX, GT, SX, and ST Device Datasheet	
Electrical Characteristics	
Operating Conditions	
Switching Characteristics	
Transceiver Performance Specifications	
Core Performance Specifications	
Periphery Performance	
HPS Specifications	
Configuration Specifications	
POR Specifications	
FPGA JTAG Configuration Timing	
FPP Configuration Timing	
AS Configuration Timing	
DCLK Frequency Specification in the AS Configuration Scheme	
PS Configuration Timing	
Initialization	
Configuration Files	
Minimum Configuration Time Estimation	
Remote System Upgrades	
User Watchdog Internal Oscillator Frequency Specifications	
I/O Timing	
Programmable IOE Delay	
Programmable Output Buffer Delay	
Glossary	
Document Revision History	

Arria V GZ Device Datasheet	
Electrical Characteristics	

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
V _{CC_AUX_SHARED}	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Symbol	Description	Maximum	Unit
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50	mA

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled programmable pull-up resistor option.		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
	Value of the I/O pin pull-up resistor before and during	$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
	programmable pull-up resistor option.	$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

⁽¹⁰⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹²⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

Transceiver Specifications for Arria V GT and ST Devices

Table 1-26: Reference Clock Specifications	for Arria V GT and ST Devices
--	-------------------------------

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Мах	Onic
Supported I/O standards	1.2 V PCML, 1.4 VPCML,	1.5 V PCML, 2.5	V PCML, Differe	ential LVPECL ⁽⁴⁰⁾	, HCSL, and LVDS
Input frequency from REFCLK input pins	_	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Duty cycle	_	45		55	%
Peak-to-peak differential input voltage	—	200		300 ⁽⁴²⁾ /2000	mV
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30		33	kHz
Spread-spectrum downspread	PCIe		0 to -0.5%		_
On-chip termination resistors	—		100		Ω
V _{ICM} (AC coupled)	—	—	1.2		V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV

⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (41)

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st	Quartus Prime V _{OD} Setting								
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit	
0	0	0	0	0	0	0	0	dB	
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB	
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB	
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB	
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB	
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB	
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB	
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB	
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB	
9	_	7.92	4.86	4	3.38	2.87	2.46	dB	
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB	
11	_	10.2	6.09	5.01	4.23	3.61	_	dB	
12	_	11.56	6.74	5.51	4.68	3.97	_	dB	
13	_	12.9	7.44	6.1	5.12	4.36	_	dB	
14	_	14.44	8.12	6.64	5.57	4.76	_	dB	
15	_	_	8.87	7.21	6.06	5.14	_	dB	

Arria V GX, GT, SX, and ST Device Datasheet

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
^L FOUTPJ_DC	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
LOUTCCJ_DC	output in integer PLL	F _{OUT} < 100 MHz	—		17.5	mUI (p-p)
L (67)	Cycle-to-cycle jitter for dedicated clock output in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
FOUTCCJ_DC		F _{OUT} < 100 MHz	—		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
(67)(70)	Period jitter for clock output on a regular I/O in integer PLL	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
OUTPJ_IO		F _{OUT} < 100 MHz	_		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
t _{FOUTCCJ_IO}	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

1-62 SPI Timing Characteristics

Symbol	Description	Min	Max	Unit
T _h	SPI MISO hold time	1	_	ns
T _{dutycycle}	SPI_CLK duty cycle	45	55	%
T _{dssfrst}	Output delay SPI_SS valid before first clock edge	8		ns
T _{dsslst}	Output delay SPI_SS valid after last clock edge	8		ns
T _{dio}	Master-out slave-in (MOSI) output delay	-1	1	ns

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸⁶⁾ This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

Figure 1-18: NAND Address Latch Timing Diagram

Term		Definition							
Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard								
			V _{CCI0}						
	V _{ОН}		V _{IH(AC)}						
			VIH(DC)						
		V _{REF}	V IL(DC)						
			VIL(AC)						
	V _{0L}								
			V _{SS}						
t _C	High-speed receiver/transmitter	input and output clock period.							
TCCS (channel-to-channel-skew)	The timing difference between th skew, across channels driven by th the Timing Diagram figure under	e fastest and slowest output edges, in he same PLL. The clock is included in r SW in this table).	cluding the t _{CO} variation and clock n the TCCS measurement (refer to						
t _{DUTY}	High-speed I/O block—Duty cyc	le on high-speed transmitter output	clock.						

Term	Definition
t _{FALL}	Signal high-to-low transition time (80–20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input
t _{outpj_io}	Period jitter on the GPIO driven by a PLL
t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20–80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage

Arria V GX, GT, SX, and ST Device Datasheet

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	_	30	μΑ

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transce	Unit			
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
Reference Clock									
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCM and HCSL	L, 1.4-V PC	CML, 1.5-V P	PCML, 2.5-V	PCML, Di	fferential LV	PECL, LVDS,	
11	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40		710	40		710	MHz	
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	-	100		710	100		710	MHz	

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Sumbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onit
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	—	600		_	600	_	mV
	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth	—	600		_	600	_	mV
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth	—	700		—	700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth	—	700		_	700	_	mV
t _{LTR} ⁽¹⁴⁹⁾	—		—	10	—	—	10	μs
t _{LTD} ⁽¹⁵⁰⁾	—	4	—		4	_	_	μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	—	_	4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	_	15	—	_	15	—	_	μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16			16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

2-32 Standard PCS Data Rate

	ATX PLL				CMU PLL (161)		fPLL			
Clock Network xN (PCIe) xN (Native PHY IP)	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_	
	8.0	8.0	Up to 13 channels above and below PLL			Up to 13			Up to 13 channels	
xN (Native PHY IP)		8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99	channels above and below PLL	3.125	3.125	above and below PLL	

Standard PCS Data Rate

Table 2-30: Standard PCS Approximate Maximum Date Rate (Gbps) for Arria V GZ Devices

The maximum data rate is also constrained by the transceiver speed grade. Refer to the "Commercial and Industrial Speed Grade Offering for Arria V GZ Devices" table for the transceiver speed grade.

Mode ⁽¹⁶⁴⁾	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
FIEO	2	C3, I3L core speed grade	9.9	9	7.84	7.2	5.3	4.7	4.24	3.76
1110	3	C4, I4 core speed grade	8.8	8.2	7.2	6.56	4.8	4.3	3.84	3.44

⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Sumbol	Conditions		C3, I3L			C4, I4			
Symbol S True Differential I/O S Standards - f _{HSDR} (data rate)	Conditions	Min	Тур	Max	Min	Тур	Max	Onic	
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J = 3 to 10 (182), (183)	(184)	—	1250	(184)	—	1050	Mbps	
	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)	_	1250	Mbps	
	SERDES factor J = 2, uses DDR Registers	(184)	—	(189)	(184)	_	(189)	Mbps	
	SERDES factor J = 1, uses SDR Register	(184)	—	(189)	(184)		(189)	Mbps	
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 ⁽¹⁹¹⁾	(184)		840	(184)		840	Mbps	

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Symbol	Conditions			C4, I4	Unit			
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
True Differential I/O Standards - f _{HSDRDPA} (dota rota)	SERDES factor J = 3 to 10 (192), (193), (194), (195), (196), (197)	150	_	1250	150	—	1050	Mbps
	SERDES factor $J \ge 4$ LVDS RX with DPA (193), (195), (196), (197)	150	_	1600	150		1250	Mbps
(uata fate)	SERDES factor J = 2, uses DDR Registers	(198)	_	(199)	(198)		(199)	Mbps
	SERDES factor J = 1, uses SDR Register	(198)	_	(199)	(198)		(199)	Mbps
	SERDES factor $J = 3$ to 10	(198)	—	(200)	(198)	—	(200)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(198)	—	(199)	(198)		(199)	Mbps
	SERDES factor J = 1, uses SDR Register	(198)	—	(199)	(198)	—	(199)	Mbps

 $^{(192)}$ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁹³⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.

⁽¹⁹⁴⁾ Arria V GZ LVDS serialization and de-serialization factor needs to be x4 and above.

⁽¹⁹⁵⁾ Requires package skew compensation with PCB trace length.

⁽¹⁹⁶⁾ Do not mix single-ended I/O buffer within LVDS I/O bank.

⁽¹⁹⁷⁾ Chip-to-chip communication only with a maximum load of 5 pF.

⁽¹⁹⁸⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

⁽¹⁹⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

⁽²⁰⁰⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Note: When you enable the decompression or design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.

Table 2-56: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1

Use these timing parameters when the decompression and design security features are disabled.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to istatus low		600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (205)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (206)	μs
t _{CF2CK} (207)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} ⁽²	hstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{ m MAX}$	_	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	_	s
t _{CLK}	DCLK period	1/f _{MAX}	_	s
f	DCLK frequency (FPP ×8/×16)	_	125	MHz
¹ MAX	DCLK frequency (FPP ×32)		100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²⁰⁸⁾	175	437	μs

⁽²⁰⁵⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²⁰⁶⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²⁰⁷⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2-8: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1,

t_{CF2ST1} tcfg ;↔ nCONFIG ŤĊF2CK nSTATUS (3) 🕳 tstatus tCF2ST0 CONF_DONE (4) TCL tCH tsT2CK ŤĊF2CD (8) DCLK (6) (7) 1 2 ••• r 2 ••• r 1 \mathbf{D} (5) tCLK DATA[31..0] (8) Word 0 Word User Mode Word 3 • • • Word (n-1) tDH tDH tpsy High-Z User I/O User Mode INIT DONE (9) tCD2UM

Timing when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. To find out the DCLK-to-DATA[] ratio for your system, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 2. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 3. After power-up, the Arria V GZ device holds nSTATUS low for the time as specified by the POR delay.
- 4. After power-up, before and during configuration, CONF_DONE is low.
- 5. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 6. "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 7. If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[31.0] pins prior to sending the first DCLK rising edge.
- 8. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 9. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Glossary

Table 2-68: Glossary

