Intel - 5AGXFB5H4F35I5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	19811
Number of Logic Elements/Cells	420000
Total RAM Bits	23625728
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfb5h4f35i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

ia V GX, GT, SX, and ST Device Datasheet	
Electrical Characteristics	
Operating Conditions	
Switching Characteristics	
Transceiver Performance Specifications	
Core Performance Specifications	
Periphery Performance	
HPS Specifications	
Configuration Specifications	
POR Specifications	
FPGA JTAG Configuration Timing	
FPP Configuration Timing	
AS Configuration Timing	
DCLK Frequency Specification in the AS Configuration Scheme	
PS Configuration Timing	
Initialization	
Configuration Files	
Minimum Configuration Time Estimation	
Remote System Upgrades	
User Watchdog Internal Oscillator Frequency Specifications	
I/O Timing	
Programmable IOE Delay	
Programmable Output Buffer Delay	
Glossary	
Document Revision History	

Arria V GZ Device Datasheet	
Electrical Characteristics	

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Transceiver Power Supply Operating Conditions

Table '	1-4:	Transceiver	Power S	upply	Operating	Conditions	for Arria V Devices	j
---------	------	-------------	---------	-------	-----------	------------	---------------------	---

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2 275	2 500	2 625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.575	2.300	2.025	v
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1 1/1 15(6)	1 14/1 18	V
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1 17	1 20	1 23	V
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17	1.20	1.23	v
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1 1/1 15(6)	1 14/1 18	V
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.15	1.14/1.10	v
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1 17	1 20	1 23	V
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17	1.20	1.23	v
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1 /25	1 500	1 575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.375	v

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
V _{CC_AUX_SHARED}	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Figure 1-1: Equation for OCT Variation Without Recalibration

$$R_{OCT} = R_{SCAL} \left(1 + \left(\frac{dR}{dT} \times \Delta T \right) \pm \left(\frac{dR}{dV} \times \Delta V \right) \right)$$

The definitions for the equation are as follows:

- The R_{OCT} value calculated shows the range of OCT resistance with the variation of temperature and V_{CCIO}.
- R_{SCAL} is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

OCT Variation after Power-Up Calibration

Table 1-10: OCT Variation after Power-Up Calibration for Arria V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0°C to 85°C.

Symbol	Description	V _{CCIO} (V)	Value	Unit
		3.0	0.100	
		2.5	0.100	
		1.8	0.100	
dR/dV	OCT variation with voltage without recalibration	1.5	0.100	%/mV
		1.35	0.150	
		1.25	0.150	
		1.2	0.150	

I/O Standard		$V_{CCIO}(V)$)		V _{ID} (mV) ⁽¹⁶⁾			$V_{ICM(DC)}(V)$		١	V _{OD} (V) ⁽¹⁷	7)	١	V _{OCM} (V) ⁽	17)(18)					
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max					
PCML	Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter reference clock I/O pin specifications, refer to Transceiver Specifications for Arria V GX and SX Devices and Transceiver for Arria V GT and ST Devices tables.									smitter, r ceiver Spe	receiver, and ecifications									
2.5 V	2 375	2.5	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1 125	1 25	1 375					
LVDS ⁽¹⁹⁾	$VDS^{(19)}$ 2.375 2.		1.25 V	1.25 V	_	1.05	D _{MAX} > 1.25 Gbps	1.55	0.247		0.0	1.125	1.25	1.575						
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4					
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4					
									300			0.60	D _{MAX} ≤ 700 Mbps	1.80						
LVILCL				500			1.00	D _{MAX} > 700 Mbps	1.60											

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
ODSAL	OBSAI 1536	1,536
ODSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

Cumbal	Condition	-I3, -C4		-I5, -C5			-C6			11	
Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{x Jitter} -Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps	_		260	_	_	300	_		350	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—		0.16	_	_	0.18	_		0.21	UI
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	_			0.15		_	0.15			0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards ⁽⁸²⁾			160	_	_	180			200	ps
t _{RISE} and t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Network		_	250		_	250		_	300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network	_		500	_		500	_		500	ps

 $^{^{(82)}\,}$ This applies to default pre-emphasis and V_{OD} settings only.

Symbol	Description	Min	Тур	Max	Unit
T _{din_end}	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$			ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

Related Information

Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

Table 1-52: SPI Master Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	—	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)	—	ns

 $^{^{(85)}}$ R_{delay} is set by programming the register <code>qspiregs.rddatacap</code>. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

Figure 1-9: SPI Master Timing Diagram

Table 1-53: SPI Slave Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	20	—	ns
T _s	MOSI Setup time	5	—	ns
T _h	MOSI Hold time	5	_	ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8	—	ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8	—	ns
T _d	MISO output delay		6	ns

Figure 1-11: SD/MMC Timing Diagram

Related Information

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	USB CLK clock period	—	16.67	_	ns
T _d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	_	11	ns
T _{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2			ns
T _h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1			ns

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

This document covers the electrical and switching characteristics for Arria V GZ devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This document also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

Related Information

Arria V Device Overview

For information regarding the densities and packages of devices in the Arria V GZ family.

Electrical Characteristics

Operating Conditions

When you use Arria V GZ devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Arria V GZ devices, you must consider the operating requirements described in this datasheet.

Arria V GZ devices are offered in commercial and industrial temperature grades.

Commercial devices are offered in -3 (fastest) and -4 core speed grades. Industrial devices are offered in -3L and -4 core speed grades. Arria V GZ devices are offered in -2 and -3 transceiver speed grades.

Table 2-1: Commercial and Industrial Speed Grade Offering for Arria V GZ Devices

C = Commercial temperature grade; I = Industrial temperature grade.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Bus Hold Specifications

Table 2-9: Bus Hold Parameters for Arria V GZ Devices

	V _{CCIO}												
Parameter	Symbol	Conditions	1.2	2 V	1.5	5 V	1.8	3 V	2.5	5 V	3.0	V	Unit
			Min	Max									
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0		50.0	_	70.0	_	μΑ
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Low overdrive current	I _{ODL}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μΑ
High overdrive current	I _{ODH}	$0V < V_{IN} < V_{CCIO}$	—	-120	_	-160	_	-200		-300	_	-500	μΑ
Bus-hold trip point	V _{TRIP}		0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block.

Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices

OCT calibration accuracy is valid at the time of calibration only.

Core Performance Specifications

Clock Tree Specifications

Table 2-33: Clock Tree Performance for Arria V GZ Devices

Symbol	Perfo	Unit	
Symbol	C3, I3L	C4, I4	
Global and Regional Clock	650	580	MHz
Periphery Clock	500	500	MHz

PLL Specifications

Table 2-34: PLL Specifications for Arria V GZ Devices

Symbol	Parameter	Min	Тур	Мах	Unit
$f_{IN}^{(167)}$	Input clock frequency (C3, I3L speed grade)	5	—	800	MHz
	Input clock frequency (C4, I4 speed grade)	5	—	650	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD	50	_	160	MHz
f	PLL VCO operating range (C3, I3L speed grade)	600	_	1600	MHz
IVCO	PLL VCO operating range (C4, I4 speed grade)	C4, I4 speed grade) 600 — 1300	MHz		
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%

⁽¹⁶⁷⁾ This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽¹⁶⁸⁾ The VCO frequency reported by the Quartus II software in the **PLL Usage Summary** section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

Arria V GZ Device Datasheet

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OUTPJ_IO} , ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		60	mUI (p-p)
t _{FOUTPJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
tournoor op (173) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_		60	mUI (p-p)
t (173) (175) (176)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
"FOUTCCJ_IO",	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
to	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
CASC_OUTPJ_DC	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)			17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

DPA Mode High-Speed I/O Specifications

Table 2-42: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L				Unit		
		Min	Тур	Мах	Min	Тур	Мах	Unit
DPA run length	—	_	_	10000	_		10000	UI

Figure 2-3: DPA Lock Time Specification with DPA PLL Calibration Enabled

Table 2-43: DPA Lock Time Specifications for Arria V GZ Devices

The DPA lock time is for one channel.

One data transition is defined as a 0-to-1 or 1-to-0 transition.

The DPA lock time stated in this table applies to both commercial and industrial grade.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽²⁰¹⁾	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions

⁽²⁰¹⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

JTAG Configuration Specifications

Table 2-54: JTAG Timing Parameters and Values for Arria V GZ Devices	;
--	---

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 (203)		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output	_	11 (204)	ns
t _{JPZX}	JTAG port high impedance to valid output		14 (204)	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Arria V GZ Device Datasheet

Altera Corporation

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

⁽²⁰⁴⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{IPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

Note: When you enable the decompression or design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.

Table 2-56: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1

Use these timing parameters when the decompression and design security features are disabled.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to istatus low		600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (205)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (206)	μs
t _{CF2CK} (207)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} ⁽²	hstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{ m MAX}$	_	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	_	s
t _{CLK}	DCLK period	1/f _{MAX}	_	s
f _{MAX}	DCLK frequency (FPP ×8/×16)	_	125	MHz
	DCLK frequency (FPP ×32)		100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²⁰⁸⁾	175	437	μs

⁽²⁰⁵⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²⁰⁶⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²⁰⁷⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

2-64 FPP Configuration Timing when DCLK to DATA[] > 1

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽²¹⁵⁾		_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁵⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.