
Intel - 5AGXFB7H4F35C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxfb7h4f35c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V	I/O buffers power supply	1.8 V	1.71	1.8	1.89	V
V _{CCIO}	1/O builets power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
VI	DC input voltage	—	-0.5		3.6	V
V _O	Output voltage	—	0		V _{CCIO}	V
	Operating junction temperature	Commercial	0		85	°C
Τ _J		Industrial	-40		100	°C
t (4)	Power supply ramp time	Standard POR	200 µs		100 ms	_
t _{RAMP} ⁽⁴⁾		Fast POR	200 µs		4 ms	

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁴⁾ This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1 08/1 12	1 1/1 15(6)	1.14/1.18	V
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	- 1.08/1.12 1.1/1.15 ⁽⁶⁾		1.14/1.10	v
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1.17	1.20	1.23	V
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17 1.20		1.23	v
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1 17	1 20	1.23	V
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17 1.20		1.23	v
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.373	v

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

AV-51002 2017.02.10

Symbol	Description	Condition (V)	Ca	Unit		
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Onic
60- Ω and 120- Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{S_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

OCT Without Calibration Resistance Tolerance Specifications

Table 1-9: OCT Without Calibration Resistance Tolerance Specifications for Arria V Devices

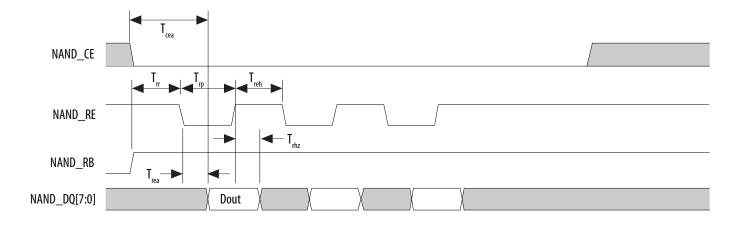
This table lists the Arria V OCT without calibration resistance to PVT changes.

Symbol	Description	Condition (V)	Re	sistanceToleran	Unit	
Symbol			-I3, -C4	–I5, –C5	-C6	Ont
25-Ω R _S	Internal series termination without calibration (25- Ω setting) $V_{CCIO} = 3.0, 2.5$		±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting) $V_{CCIO} = 1.8, 1.5$		±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
100-Ω R _D	Internal differential termination (100- Ω setting)	$V_{CCIO} = 2.5$	±25	±40	±40	%

Symbol/Description	Condition	Т	Unit		
Symbol/Description	Condition	Min	Тур	Мах	Onit
Data rate (10-Gbps transceiver) ⁽⁴⁴⁾	_	0.611	—	10.3125	Gbps
Absolute V_{MAX} for a receiver pin ⁽⁴⁵⁾	_		_	1.2	V
Absolute $\mathrm{V}_{\mathrm{MIN}}$ for a receiver pin	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	—	—	_	1.6	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration	_	_	_	2.2	V
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁶⁾	_	100			mV
V _{ICM} (AC coupled)	_	_	750 ⁽⁴⁷⁾ /800		mV
V _{ICM} (DC coupled)	$\leq 3.2 \mathrm{Gbps}^{(48)}$	670	700	730	mV
	85- Ω setting	85			Ω
Differential on-chip termination	100-Ω setting	100			Ω
resistors	120-Ω setting		120		Ω
	150-Ω setting		150		Ω
t _{LTR} ⁽⁴⁹⁾	_	_	_	10	μs
t _{LTD} ⁽⁵⁰⁾	_	4			μs

⁽⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

⁽⁴⁶⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.


 $^{^{(47)}}$ The AC coupled $V_{\rm ICM}$ is 750 mV for PCIe mode only.

⁽⁴⁸⁾ For standard protocol compliance, use AC coupling.

 $^{^{(49)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

⁽⁵⁰⁾ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

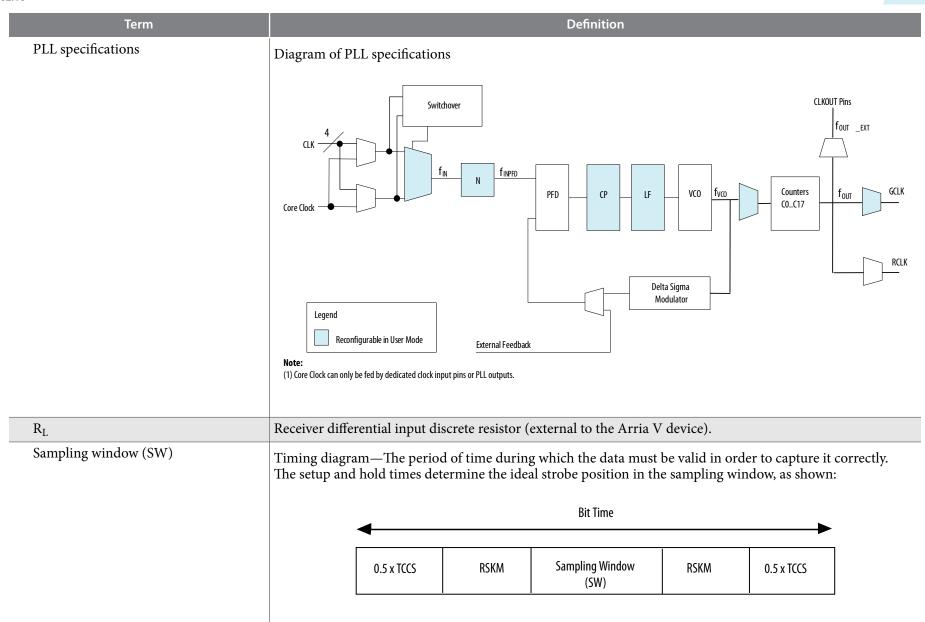
Figure 1-20: NAND Data Read Timing Diagram

ARM Trace Timing Characteristics

Table 1-61: ARM Trace Timing Requirements for Arria V Devices

Most debugging tools have a mechanism to adjust the capture point of trace data.

Description	Min	Мах	Unit
CLK clock period	12.5	—	ns
CLK maximum duty cycle	45	55	%
CLK to D0 –D7 output data delay	-1	1	ns


UART Interface

The maximum UART baud rate is 6.25 megasymbols per second.

GPIO Interface

The minimum detectable general-purpose I/O (GPIO) pulse width is 2 µs. The pulse width is based on a debounce clock frequency of 1 MHz.

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Date	Version	Changes
December 2015	2015.12.16	 Updated Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices table. Updated F_{clk}, T_{dutvcvcle}, and T_{dssfrst} specifications.
		• Added T_{qspi_clk} , T_{din_start} , and T_{din_end} specifications.
		Removed T _{dinmax} specifications.
		• Updated the minimum specification for T _{clk} to 16.67 ns and removed the maximum specification in SPI Master Timing Requirements for Arria V Devices table.
		• Updated Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices table.
		• Updated T _{clk} to T _{sdmmc_clk_out} symbol.
		• Updated T _{sdmmc_clk_out} and T _d specifications.
		• Added T_{sdmmc_clk} , T_{su} , and T_h specifications.
		Removed T _{dinmax} specifications.
		Updated the following diagrams:
		Quad SPI Flash Timing Diagram
		SD/MMC Timing Diagram
		• Updated configuration .rbf sizes for Arria V devices.
		Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i> .

1-96 Document Revision History

Date	Version	Changes
June 2015	2015.06.16	• Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		True mini-LVDS output standard: data rates of up to 400 Mbps
		 Added note in the condition for Transmitter—Emulated Differential I/O Standards f_{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		Updated T _h location in I ² C Timing Diagram.
		Updared T _{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t _{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		• FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

This document covers the electrical and switching characteristics for Arria V GZ devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This document also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

Related Information

Arria V Device Overview

For information regarding the densities and packages of devices in the Arria V GZ family.

Electrical Characteristics

Operating Conditions

When you use Arria V GZ devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Arria V GZ devices, you must consider the operating requirements described in this datasheet.

Arria V GZ devices are offered in commercial and industrial temperature grades.

Commercial devices are offered in -3 (fastest) and -4 core speed grades. Industrial devices are offered in -3L and -4 core speed grades. Arria V GZ devices are offered in -2 and -3 transceiver speed grades.

Table 2-1: Commercial and Industrial Speed Grade Offering for Arria V GZ Devices

C = Commercial temperature grade; I = Industrial temperature grade.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Symbol	Description	Minimum	Maximum	Unit
VI	DC input voltage	-0.5	3.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 2-3: Transceiver Power Supply Absolute Conditions for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in the following table. They may also undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Reference Clock								
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCM and HCSL	IL, 1.4-V PC	CML, 1.5-V F	CML, 2.5-V	' PCML, Di	fferential LV	PECL, LVDS,
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	eiver Spee	ed Grade 3	Unit
Symbol/Description	Conditions –	Min	Тур	Max	Min	Тур	Мах	
	DC gain setting = 0		0	_	—	0	_	dB
	DC gain setting = 1	—	2	_		2	_	dB
Programmable DC gain	DC gain setting = 2		4			4	_	dB
	DC gain setting = 3	—	6	_	—	6	—	dB
	DC gain setting = 4	—	8	—	_	8	—	dB

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter

Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			- Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit
Supported I/O Standards	1.4-V and 1.5-V PCML							
Data rate (Standard PCS)	—	600	_	9900	600	_	8800	Mbps
Data rate (10G PCS)	_	600		12500	600	_	10312.5	Mbps

Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	15	300	47	940
	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
V_{OD} differential peak to peak typical	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Symbol	Parameter	Min	Тур	Max	Unit
t _{OUTPJ_IO} ^{, (173)} , ⁽¹⁷⁵⁾	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTPJ_IO	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)			60	mUI (p-p)
t _{FOUTPJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		600	ps (p-p)
FOUTPJ_IO	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)		_	60	mUI (p-p)
t _{OUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			600	ps (p-p)
	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)			60	mUI (p-p)
+ (173) (175) (176)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
t _{FOUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC} ⁽¹⁷³⁾ , ⁽¹⁷⁷⁾	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)			17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

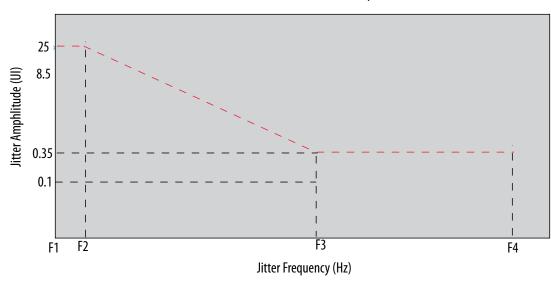
⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Symbol	Conditions	C3, I3L			C4, I4			- Unit
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit
	SERDES factor J = 3 to 10 (182), (183)	(184)	_	1250	(184)	_	1050	Mbps
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)		1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(184)		(189)	(184)		(189)	Mbps
	SERDES factor J = 1, uses SDR Register	(184)	_	(189)	(184)		(189)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 ⁽¹⁹¹⁾	(184)		840	(184)		840	Mbps

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.


- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

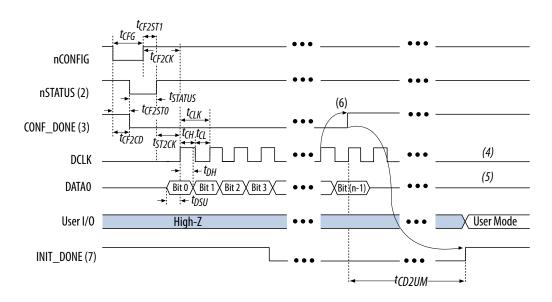
⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Figure 2-4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate ≥ 1.25 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Table 2-45: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate ≥ 1.25 Gbps


Jitter Fred	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Passive Serial Configuration Timing

Figure 2-10: PS Configuration Timing Waveform

Timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the Device and Pins Option.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Programmable IOE Delay

Fast Model Slow Model Available Parameter (228) Min Offset (229) Unit Settings Industrial Commercial C3 C4 I3L 14 D1 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0 D2 32 0.230 0.244 0.459 0.503 0.456 0.500 ns D3 8 0 1.699 2.992 3.192 1.587 3.047 3.257 ns 0 D4 64 0.464 0.492 0.924 1.011 0.920 1.006 ns D5 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0.499 D6 32 0 0.244 0.503 0.229 0.458 0.456 ns

Table 2-66: IOE Programmable Delay for Arria V GZ Devices

Programmable Output Buffer Delay

Table 2-67: Programmable Output Buffer Delay for Arria V GZ Devices

You can set the programmable output buffer delay in the Quartus II software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

Symbol	Parameter	Typical	Unit
		0 (default)	ps
	Rising and/or falling edge delay	50	ps
D _{outbuf}	Kishig and/or failing edge delay	100	ps
		150	ps

⁽²²⁸⁾ You can set this value in the Quartus II software by selecting **D1**, **D2**, **D3**, **D4**, **D5**, and **D6** in the **Assignment Name** column of **Assignment Editor**.

⁽²²⁹⁾ Minimum offset does not include the intrinsic delay.

Date	Version	Changes
June 2016	2016.06.20	 Changed column heading from "Value" to "Maximum" in the "Pin Capacitance for Arria V GZ Devices" table. Changed the minimum supported data rate range values from "1000" to "2000" in the "ATX PLL Specifications for Arria V GZ Devices" table. Added the supported data rates for the following output standards using true LVDS output buffer types in the "High-Speed Clock Specifications for Arria V GZ Devices" table: True RSDS output standard: data rates of up to 230 Mbps True mini-LVDS output standard: data rates of up to 340 Mbps
December 2015	2015.12.16	 Removed the CDR ppm tolerance specification from the "Receiver Specifications for Arria V GZ Devices" table. Removed transmitter rise and fall time specifications from the "Transmitter Specifications for Arria V GZ Devices" table. Changed the .rbf sizes in the "Uncompressed .rbf Sizes for Arria V GZ Devices" table. Added a footnote to the "Transmitter High-Speed I/O Specifications for Arria V GZ Devices" table.
June 2015	2015.06.16	 Changed the conditions for the reference clock rise and fall time and added a note to the condition in the "Reference Clock Specifications for Arria V GZ Devices" table. Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Receiver Specifications for Arria V GZ Devices" table.
January 2015	2015.01.30	 Added 240-Ω to the "OCT Calibration Accuracy Specifications for Arria V GZ Devices" table. Changed the CDR PPM tolerance spec in the "Receiver Specifications for Arria V GZ Devices" table. Added additional max data rate for fPLL in the "Fractional PLL Specifications for Arria V GZ Devices" table.

