E·XFL

Intel - 5AGXMA1D4F31C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	3537
Number of Logic Elements/Cells	75000
Total RAM Bits	8666112
Number of I/O	416
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma1d4f31c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions Switching Characteristics Transceiver Performance Specifications Core Performance Specifications Periphery Performance Configuration Specification POR Specifications JTAG Configuration Specifications Fast Passive Parallel (FPP) Configuration Timing Active Serial Configuration Timing	2-1
Switching Characteristics	2-21
Transceiver Performance Specifications	
Core Performance Specifications	2-37
Periphery Performance	
Configuration Specification	2-56
POR Specifications	2-56
JTAG Configuration Specifications	
Fast Passive Parallel (FPP) Configuration Timing	
Active Serial Configuration Timing Passive Serial Configuration Timing	
Passive Serial Configuration Timing	2-67
Initialization	
Initialization	
Remote System Upgrades Circuitry Timing Specification	2-70
User Watchdog Internal Oscillator Frequency Specification	2-71
I/O Timing	2-71
Programmable IOE Delay	2-72
Programmable Output Buffer Delay	
Glossary	2-73
Programmable Output Buffer Delay Glossary Document Revision History	2-78

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Core veltage power supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC}	Core voltage power supply	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration nine neuron cumply	3.0 V	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins power supply	2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	—	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	_	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V	I/O buffers power supply	1.8 V	1.71	1.8	1.89	V
V _{CCIO}	1/O builets power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
VI	DC input voltage	—	-0.5		3.6	V
V _O	Output voltage	—	0		V _{CCIO}	V
	Operating junction temperature	Commercial	0		85	°C
TJ		Industrial	-40		100	°C
t (4)	Power supply ramp time	Standard POR	200 µs		100 ms	_
t _{RAMP} ⁽⁴⁾		Fast POR	200 µs		4 ms	

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁴⁾ This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)	
1/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} – 0.04	V _{REF}	$V_{REF} + 0.04$
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		$V_{CCIO}/2$	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		$V_{CCIO}/2$	_
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	—	_	_

Table 1-15: Single-Ended SSTL, HSTL, and H	SUL I/O Reference Voltage Specifications for Arria V Devices

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Trans	Transceiver Speed Grade 4			eiver Speed G	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Supported I/O standards	1.2 V PCM	L, 1.4 V PCN	IL,1.5 V PCML	, 2.5 V PCMI	L, Differentia	l LVPECL ⁽²³⁾ ,	HCSL, and	LVDS
Input frequency from REFCLK input pins	_	27		710	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁴⁾			400			400	ps
Fall time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽²⁴⁾	_		400			400	ps
Duty cycle		45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	300 ⁽²⁵⁾ / 2000	200		300 ⁽²⁵⁾ / 2000	mV

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	_	_	670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
f _{out_ext}	output	–5 speed grade	_	_	622 ⁽⁶³⁾	MHz
		-6 speed grade			500 ⁽⁶³⁾	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)		45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	_	10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	_	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
+ (65)(66)	Input dock and to and ittar	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.15	UI (p-p)
t _{INCCJ} ⁽⁶⁵⁾⁽⁶⁶⁾	Input clock cycle-to-cycle jitter	$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Parameter	Clock Network	Symbol	-I3,	-C4	–15,	-C5	-(6	Unit
		Symbol	Min	Max	Min	Max	Min	Max	Ont
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	6	3	9	0	9	4	ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices


Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks			20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for R_S OCT/ R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of octusrclk clock cycles required for oct code to shift out		32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5	_	ns

Table 1-57: RGMII RX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Unit
T _{clk} (1000Base-T)	RX_CLK clock period		8	ns
T _{clk} (100Base-T)	RX_CLK clock period		40	ns
T _{clk} (10Base-T)	RX_CLK clock period		400	ns
T _{su}	RX_D/RX_CTL setup time	1		ns
T _h	RX_D/RX_CTL hold time	1	—	ns

Figure 1-14: RGMII RX Timing Diagram

Table 1-58: Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	MDC clock period	_	400	_	ns
T _d	MDC to MDIO output data delay	10		20	ns
T _s	Setup time for MDIO data	10		_	ns
T _h	Hold time for MDIO data	0	_		ns

Term		Definition				
		Definition				
Single-ended voltage referenced I/O standard	 The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The A values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard 					
			V _{CCI0}			
	V _{0Н}		V _{IH(AC)}			
			VIH(DC)			
		V REF	/ V _{IL(DC)}			
		/	/ V il(AC)			
	V _{0L}					
			V _{SS}			
t _C	High-speed receiver/transmitter i	nput and output clock period.				
TCCS (channel-to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).					
t _{DUTY}	High-speed I/O block—Duty cycl	e on high-speed transmitter outpu	t clock.			

1-94 Document Revision History

Term	Definition
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor

Document Revision History

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications in Receiver Specifications for Arria V GX and SX Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices PS Timing Parameters for Arria V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Arria V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Arria V Devices table.

1-98 Document Revision History

Date	Version	Changes
July 2014	3.8	 Added a note in Table 3, Table 4, and Table 5: The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Updated V_{CC_HPS} specification in Table 5. Added a note in Table 19: Differential inputs are powered by V_{CCPD} which requires 2.5 V. Updated "Minimum differential eye opening at the receiver serial input pins" specification in Table 20 and Table 21. Updated description in "HPS PLL Specifications" section. Updated VCO range maximum specification in Table 39. Updated T_h and T_h specifications in Table 45. Added T_h specification in Table 47 and Figure 13. Updated a note in Figure 20, Figure 21, and Figure 23 as follows: Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. Removed "Remote update only in AS mode" specification in Table 58. Added DCLK device initialization clock source specification in Table 60. Added description in "Configuration Files" section: The IOCSR .rbf size is specifically for the Configuration via Protocol (CvP) feature. Removed f_{MAX_RU_CLK} specification in Table 63.
February 2014	3.7	 Updated V_{CCRSTCLK_HPS} maximum specification in Table 1. Added V_{CC_AUX_SHARED} specification in Table 1.
December 2013	3.6	 Added "HPS PLL Specifications". Added Table 24, Table 39, and Table 40. Updated Table 1, Table 3, Table 5, Table 19, Table 20, Table 21, Table 38, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, Table 51, Table 55, Table 56, and Table 59. Updated Figure 7, Figure 13, Figure 15, Figure 16, and Figure 19. Removed table: GPIO Pulse Width for Arria V Devices.

This document covers the electrical and switching characteristics for Arria V GZ devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This document also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

Related Information

Arria V Device Overview

For information regarding the densities and packages of devices in the Arria V GZ family.

Electrical Characteristics

Operating Conditions

When you use Arria V GZ devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Arria V GZ devices, you must consider the operating requirements described in this datasheet.

Arria V GZ devices are offered in commercial and industrial temperature grades.

Commercial devices are offered in -3 (fastest) and -4 core speed grades. Industrial devices are offered in -3L and -4 core speed grades. Arria V GZ devices are offered in -2 and -3 transceiver speed grades.

Table 2-1: Commercial and Industrial Speed Grade Offering for Arria V GZ Devices

C = Commercial temperature grade; I = Industrial temperature grade.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
VI	DC input voltage		-0.5	_	3.6	V
V _O	Output voltage		0	_	V _{CCIO}	V
Т.	T _J Operating junction temperature		0		85	°C
ıj			-40	_	100	°C
t	t Dower supply remp time		200 µs	_	100 ms	_
t _{RAMP} Pow	Power supply ramp time	Fast POR	200 µs	_	4 ms	—

Recommended Transceiver Power Supply Operating Conditions

Table 2-6: Recommended Transceiver Power Supply Operating Conditions for Arria V GZ Devices

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
V _{CCA_GXBL}	Transseiver shannel DLL nevver supply (left side)	2.85	3.0	3.15	V	
(119), (120)	Transceiver channel PLL power supply (left side)		2.5	2.625	v	
V _{CCA} _	Transceiver channel PLL power supply (right side)	2.85	3.0	3.15	V	
V _{CCA} GXBR ⁽¹¹⁹⁾ , ⁽¹²⁰⁾	Transcerver channel PLL power supply (fight side)	2.375	2.5	2.625	v	
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	0.82	0.85	0.88	V	
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	0.82	0.85	0.88	V	
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	0.82	0.85	0.88	V	

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁰⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽¹¹⁹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2			Transceiver Speed Grade 3			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	– Unit	
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V	
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$	_	_	1.8	_		1.8	V	
device configuration $^{(146)}$	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$		_	2.4	_	_	2.4	V	
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85	_	_	85	_		mV	
	85– Ω setting		85 ± 30%	_	_	85 ± 30%	_	Ω	
Differential on-chip termination	100– Ω setting		100 ± 30%			100 ± 30%		Ω	
resistors	120– Ω setting	—	120 ± 30%		—	120 ± 30%		Ω	
	150– Ω setting	_	150 ± 30%		_	150 ± 30%		Ω	

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Core Performance Specifications

Clock Tree Specifications

Table 2-33: Clock Tree Performance for Arria V GZ Devices

Symbol	Perfor	Unit	
Synbol	C3, I3L	C4, I4	Onit
Global and Regional Clock	650	580	MHz
Periphery Clock	500	500	MHz

PLL Specifications

Table 2-34: PLL Specifications for Arria V GZ Devices

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN} ⁽¹⁶⁷⁾	Input clock frequency (C3, I3L speed grade)	5	_	800	MHz
IIN	Input clock frequency (C4, I4 speed grade)	5	_	650	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{FINPFD}	Fractional Input clock frequency to the PFD	50	_	160	MHz
f _{VCO} ⁽¹⁶⁸⁾	PLL VCO operating range (C3, I3L speed grade)	600		1600	MHz
IVCO	PLL VCO operating range (C4, I4 speed grade)	600	_	1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40		60	%

⁽¹⁶⁷⁾ This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽¹⁶⁸⁾ The VCO frequency reported by the Quartus II software in the **PLL Usage Summary** section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

Arria V GZ Device Datasheet

t_{ARESET}

Symbol	Parameter	Min	Тур	Max	Unit
f _{OUT} ⁽¹⁶⁹⁾	Output frequency for an internal global or regional clock (C3, I3L speed grade)	—	—	650	MHz
IOUT	Output frequency for an internal global or regional clock (C4, I4 speed grade)	—		580	MHz
f _{OUT_EXT} ⁽¹⁶⁹⁾	Output frequency for an external clock output (C3, I3L speed grade)	—	_	667	MHz
IOUT_EXT	Output frequency for an external clock output (C4, I4 speed grade)	_	_	533	MHz
toutduty	Duty cycle for a dedicated external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
f _{dyconfigclk}	Dynamic configuration clock for mgmt_clk and scanclk	_	_	100	MHz
t _{LOCK}	Time required to lock from the end-of-device configuration or deassertion of areset	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/ delays)	_	_	1	ms
	PLL closed-loop low bandwidth	_	0.3		MHz
f_{CLBW}	PLL closed-loop medium bandwidth	_	1.5		MHz
	PLL closed-loop high bandwidth (170)	_	4		MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps

10

_

Minimum pulse width on the areset signal

ns

 $^{^{(169)}}$ This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.

⁽¹⁷⁰⁾ High bandwidth PLL settings are not supported in external feedback mode.

DLL Range Specifications

Table 2-47: DLL Range Specifications for Arria V GZ Devices

Arria V GZ devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Parameter	C3, I3L	C4, I4	Unit
DLL operating frequency range	300 - 890	300 - 890	MHz

DQS Logic Block Specifications

Table 2-48: DQS Phase Offset Delay Per Setting for Arria V GZ Devices

The typical value equals the average of the minimum and maximum values.

The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -3 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is $[625 \text{ ps} + (10 \times 11 \text{ ps}) \pm 20 \text{ ps}] = 735 \text{ ps} \pm 20 \text{ ps}$.

Speed Grade	Min	Мах	Unit
C3, I3L	8	15	ps
C4, I4	8	16	ps

Table 2-49: DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria V GZ Devices

This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a -3 speed grade is ± 84 ps or ± 42 ps.

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit
1	30	32	ps
2	60	64	ps
3	90	96	ps

Table 2-52: Worst-Case DCD on Arria V GZ I/O Pins

The DCD numbers do not cover the core clock network.

Symbol	С	3, I3L	C	24, 14	Unit
	Min	Мах	Min	Мах	Ont
Output Duty Cycle	45	55	45	55	%

Configuration Specification

POR Specifications

Table 2-53: Fast and Standard POR Delay Specification for Arria V GZ Devices

Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Arria V Devices" table in the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

POR Delay	Minimum (ms)	Maximum (ms)
Fast	4	12 (202)
Standard	100	300

Related Information

Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Altera Corporation

⁽²⁰²⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

Note: When you enable the decompression or design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.

Table 2-56: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1

Use these timing parameters when the decompression and design security features are disabled.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (205)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (206)	μs
t _{CF2CK} (207)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} (20	hstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	—	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	s
t _{CLK}	DCLK period	1/f _{MAX}	—	s
f _{MAX}	DCLK frequency (FPP ×8/×16)		125	MHz
	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²⁰⁸⁾	175	437	μs

⁽²⁰⁵⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²⁰⁶⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²⁰⁷⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Date	Version	Changes
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53.
February 2014	3.7	Updated Table 28.
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications".
August 2013	3.5	Updated Table 28.
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28.
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9.
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage".
December 2012	3.0	Initial release.

