E·XFL

Intel - 5AGXMA1D4F31I5 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3537
Number of Logic Elements/Cells	75000
Total RAM Bits	8666112
Number of I/O	416
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma1d4f31i5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1-4 Recommended Operating Conditions

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit		
		3.8	100	%		
		3.85 68				
		3.9	45	%		
		3.95	28	%		
		4	15	%		
		4.05	13	%		
	AC input voltage	4.1	11	%		
		4.15	9	%		
Vi (AC)		4.2	8	%		
		4.25	7	%		
		4.3	5.4	%		
		4.35	3.2	%		
		4.4	1.9	%		
		4.45	1.1	%		
		4.5	0.6	%		
		4.55	0.4	%		
		4.6	0.2	%		

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

Recommended Operating Conditions

Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Maximum	Unit		
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50	mA		

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
D		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled the programmable pull-up resistor option.	$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
кру		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

⁽¹⁰⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹²⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Trans	ceiver Speed Gr	ade 4	Transc	eiver Speed G	irade 6	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit	
Supported I/O standards	1.2 V PCM	L, 1.4 V PCM	IL,1.5 V PCML	, 2.5 V PCMI	., Differentia	LVPECL ⁽²³⁾	HCSL, and	LVDS	
Input frequency from REFCLK input pins	—	27	—	710	27		710	MHz	
Rise time	Measure at $\pm 60 \text{ mV of}$ differential signal ⁽²⁴⁾						400	ps	
Fall time	Measure at $\pm 60 \text{ mV of}$ differential signal ⁽²⁴⁾			400	_		400	ps	
Duty cycle	_	45	_	55	45	_	55	%	
Peak-to-peak differential input voltage	—	200		300 ⁽²⁵⁾ / 2000	200	_	300 ⁽²⁵⁾ / 2000	mV	

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

AV-51002 2017.02.10

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transc	Unit					
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit			
Run length	—	—	_	200	—		200	UI			
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Refer to C Gain and Response G	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.								

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transc	eiver Speed G	irade 6	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic	
Supported I/O standards				1.5 V PC	ML				
Data rate	_	611		6553.6	611	_	3125	Mbps	
V _{OCM} (AC coupled)	_	_	650	_		650	_	mV	
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV	
	85- Ω setting	_	85	_		85	_	Ω	
Differential on-chip	100- Ω setting	—	100	—	_	100	_	Ω	
termination resistors	120- Ω setting		120			120		Ω	
	150-Ω setting	_	150	_		150	_	Ω	
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps	—	_	15	_	_	15	ps	
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode	_	_	180	_	—	180	ps	

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Transceiver Specifications for Arria V GT and ST Devices

Table 1-26: Reference Clock Specifications	for Arria V GT and ST Devices
--	-------------------------------

Symbol/Description	Condition	Tran	sceiver Speed Gra	ide 3	Unit	
Symbol/Description	Condition	Min	Тур	Мах	Onic	
Supported I/O standards	1.2 V PCML, 1.4 VPCML,	1.5 V PCML, 2.5	V PCML, Differe	ential LVPECL ⁽⁴⁰⁾	, HCSL, and LVDS	
Input frequency from REFCLK input pins	_	27		710	MHz	
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps	
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾				ps	
Duty cycle	_	45		55	%	
Peak-to-peak differential input voltage	—	200		300 ⁽⁴²⁾ /2000	mV	
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30		33	kHz	
Spread-spectrum downspread	PCIe		0 to -0.5%		_	
On-chip termination resistors	—		100		Ω	
V _{ICM} (AC coupled)	—	—	1.2		V	
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV	

⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (41)

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		-3 speed grade			670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
IOUT_EXT	output	–5 speed grade		_	622 ⁽⁶³⁾	MHz
		–6 speed grade			500(63)	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)	_	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_		10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_		100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f_{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾		4		MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift				±50	ps
t _{ARESET}	Minimum pulse width on the areset signal		10			ns
t(65)(66)	Input clock cycle_to_cycle iitter	$F_{REF} \ge 100 \text{ MHz}$			0.15	UI (p-p)
t _{INCCJ} (00)(00)		$F_{REF} < 100 \text{ MHz}$			±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

High-Speed I/O Specifications

Table 1-40: High-Speed I/O Specifications for Arria V Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block. When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

The Arria V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

	Symbol	Condition	-I3, -C4		-I5, -C5			-C6			Unit	
	Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (inp Differential I	out clock frequency) True /O Standards	Clock boost factor W = 1 to $40^{(72)}$	5	_	800	5		750	5	_	625	MHz
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I I/O Standards ⁽⁷³⁾	Clock boost factor W = 1 to $40^{(72)}$	5		625	5		625	5		500	MHz
f _{HSCLK_in} (inp Single-Ended	out clock frequency) I I/O Standards ⁽⁷⁴⁾	Clock boost factor W = 1 to $40^{(72)}$	5	_	420	5	_	420	5	—	420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	625(75)	5	_	625(75)	5		500 ⁽⁷⁵⁾	MHz
Transmitter	True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J =3 to $10^{(76)}$	(77)		1250	(77)		1250	(77)		1050	Mbps

⁽⁷³⁾ This applies to DPA and soft-CDR modes only.

⁽⁷²⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

⁽⁷⁴⁾ This applies to non-DPA mode only.

⁽⁷⁵⁾ This is achieved by using the LVDS clock network.

 $^{^{(76)}}$ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽⁷⁷⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Symbol		Condition	–I3, –C4			–I5, –C5			-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	TCCC	True Differential I/O Standards		_	150		-	150	_	_	150	ps
1005	Emulated Differential I/O Standards			300		_	300		_	300	ps	
True Differential I Standards - f _{HSDR} (data rate)	True Differential I/O Standards - freepopp	SERDES factor J =3 to $10^{(76)}$	150		1250	150		1250	150		1050	Mbps
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps
Receiver	f _{HSDR} (data rate)	SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps
		SERDES factor J = 1 to 2, uses DDR registers	(77)		(79)	(77)	_	(79)	(77)	_	(79)	Mbps
DPA Mode	DPA run length		_	_	10000	_	_	10000	_	_	10000	UI
Soft-CDR Mode	Soft-CDR ppm tolerance			_	300		_	300		_	300	±ppm
Non-DPA Mode	Sampling Window				300		_	300		_	300	ps

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸³⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition
SPI-4	00000000001111111111	2	128	640
Parallel Rapid I/O	00001111	2	128	640
	10010000	4	64	640
Miscellaneous	10101010	8	32	640
	01010101	8	32	640

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

FPP Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP $\times 16$ where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 1-65: DCLK-to-DATA[] Ratio for Arria V Devices

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	Off	Off	1
EDD (9 bit wide)	On	Off	1
frr (o-bit wide)	Off	On	2
	On	On	2
	Off	Off	1
EDD (16 bit wide)	On	Off	2
fif (lo-bit wide)	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLKto-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria V Devices table.

Table 1-66: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

FPP Configuration Timing when DCLK-to-DATA[] >1

Table 1-67: FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁸⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽⁹⁹⁾	μs
t _{CF2CK} ⁽¹⁰⁰⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁰⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	$N - 1/f_{\rm DCLK}^{(101)}$		S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰²⁾	175	437	μs

⁽⁹⁸⁾ This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁹⁾ This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

 $^{^{(100)}}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰¹⁾ N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

⁽¹⁰²⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

		Active Serial ⁽¹⁰⁸⁾		Fast Passive Parallel ⁽¹⁰⁹⁾			
Variant	Member Code	Width	DCLK (MHz)	Minimum Configura- tion Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)
	A1	4	100	178	16	125	36
	A3	4	100	178	16	125	36
	A5	4	100	255	16	125	51
Arria V CV	A7	4	100	255	16	125	51
Allia V GA	B1	4	100	344	16	125	69
	В3	4	100	344	16	125	69
	B5	4	100	465	16	125	93
	B7	4	100	465	16	125	93
	C3	4	100	178	16	125	36
Amia V CT	C7	4	100	255	16	125	51
Allia v GI	D3	4	100	344	16	125	69
	D7	4	100	465	16	125	93
Arria V SV	В3	4	100	465	16	125	93
Arria v 5A	B5	4	100	465	16	125	93
Arria V ST	D3	4	100	465	16	125	93
Arria V ST	D5	4	100	465	16	125	93

Related Information Configuration Files on page 1-83

(108) DCLK frequency of 100 MHz using external CLKUSR.
 (109) Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

1-88	Glossary			AV-5100 2017.02.1
	Symbol	Parameter	Typical	Unit
		Dising and/or falling adds delay	0 (default)	ps
D _{OUTBUF}	·		50	ps
	Rising and/or failing edge delay	100	ps	
			150	ps

Glossary

Table 1-78: Glossary

Term	Definition	
Differential I/O standards	Receiver Input Waveforms	
	Single-Ended Waveform	
		Positive Channel (p) = V_{IH}
	V _{CM}	Negative Channel (n) $= V_{IL}$
		Ground
	Differential Waveform	
	V _{ID}	a 11
		p - n = 0 V

AV-51002

Term	Definition
t _{FALL}	Signal high-to-low transition time (80–20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input
t _{outpj_io}	Period jitter on the GPIO driven by a PLL
t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20–80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-94 Document Revision History

Term	Definition
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor

Document Revision History

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications in Receiver Specifications for Arria V GX and SX Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices PS Timing Parameters for Arria V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Arria V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Arria V Devices table.

Date	Version	Changes
January 2015	2015.01.30	Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices
		• Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		• Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		• Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.
		• Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).
		Changed the symbol for HPS PLL input jitter divide value from NR to N.
		• Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices
		 Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.
		Added HPS JTAG timing specifications.
		• Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{JPCO} = 13$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.
		• Updated the value in the V _{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

Symbol	Description	Minimum	Maximum	Unit
V _I	DC input voltage	-0.5	3.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 2-3: Transceiver Power Supply Absolute Conditions for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in the following table. They may also undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

|--|

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transce	eiver Speed	lluit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max		
Rise time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	nc	
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	—		400			400	ps	
Duty cycle	_	45	—	55	45	—	55	%	
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30	_	33	30	_	33	kHz	
Spread-spectrum downspread	PCIe		0 to	_		0 to		%	
			-0.5			-0.5			
On-chip termination resistors	—	_	100	_		100		Ω	
Absolute V _{MAX}	Dedicated reference clock pin	—		1.6			1.6	V	
	RX reference clock pin	_	—	1.2		—	1.2		
Absolute V _{MIN}	—	-0.4			-0.4			V	
Peak-to-peak differential input voltage	—	200		1600	200		1600	mV	
V _{ICM} (AC coupled)	Dedicated reference clock pin	1000/900/850 (139)			1000/900/850 (139)			mV	
	RX reference clock pin	1.0/0.9/0.85 (140)			1.0/0.9/0.85 ⁽¹⁴⁰⁾			mV	
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	mV	

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

2-28	Transmitter
------	-------------

Sumbol/Description	Conditions	Transceiver Speed		Transceiver Speed Grade 2		Transceiver Spe		ed Grade 3	Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onit	
	85- Ω setting	—	85 ± 20%	_	—	85 ± 20%	—	Ω	
Differential on-chip termination	100- Ω setting	_	100 ± 20%	_		100 ± 20%	_	Ω	
resistors	120- Ω setting	—	120 ± 20%	—	—	120 ± 20%	_	Ω	
	150-Ω setting		150 ± 20%	—	—	150 ± 20%	_	Ω	
V _{OCM} (AC coupled)	0.65-V setting	—	650	—	—	650	—	mV	
V _{OCM} (DC coupled)	_	—	650	—	—	650	—	mV	
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_		15	—	_	15	ps	
Intra-transceiver block transmitter channel-to-channel skew	x6 PMA bonded mode			120		_	120	ps	
Inter-transceiver block transmitter channel-to-channel skew	xN PMA bonded mode			500			500	ps	

Related Information

Arria V Device Overview

For more information about device ordering codes.

Date	Version	Changes
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53.
February 2014	3.7	Updated Table 28.
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications".
August 2013	3.5	Updated Table 28.
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28.
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9.
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage".
December 2012	3.0	Initial release.

