
E·XFL

Intel - 5AGXMA3D4F27I5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	7362
Number of Logic Elements/Cells	156000
Total RAM Bits	11746304
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma3d4f27i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Standard	V _{IL}	_{.(DC)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
	Min	Max Min		Max	Max	Min	Max	Min	(mA)	OH (יעייי)
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	—	V _{REF} – 0.2	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	—	V _{REF} - 0.13	V _{REF} + 0.13	_	V _{REF} – 0.22	$V_{REF} + 0.22$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$		_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		V _{SW}	_{ING(DC)} (V)		$V_{X(AC)}(V)$		V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Мах	Min	Тур	Мах	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	$V_{CCIO} + 0.6$	V _{CCIO} /2 – 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	$V_{CCIO} + 0.6$	V _{CCIO} /2 – 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$	
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$	

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

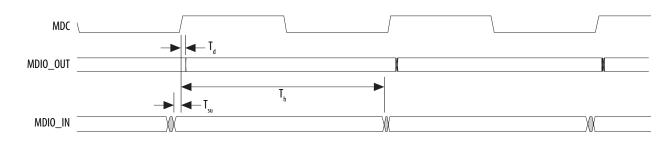
	Symbol	Condition		-I3, -C4			–I5, –C5			Unit			
	Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Onic	
	TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps	
	1003	Emulated Differential I/O Standards	_	_	300	_	_	300		_	300	ps	
	True Differential I/O Standards - f _{HSDRDPA}	SERDES factor J =3 to $10^{(76)}$	150		1250	150	_	1250	150		1050	Mbps	
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps	
Receiver		SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps	
	f _{HSDR} (data rate)	SERDES factor J = 1 to 2, uses DDR registers	(77)		(79)	(77)		(79)	(77)		(79)	Mbps	
DPA Mode	DPA run length	_	_	_	10000	_	_	10000	_	_	10000	UI	
Soft-CDR Mode	Soft-CDR ppm tolerance	_	_	_	300	_	_	300	_	_	300	±ppm	
Non-DPA Mode	Sampling Window	_		_	300	_	_	300		_	300	ps	

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸³⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

The SD/MMC interface calibration support will be available in a future release of the preloader through the SoC EDS software update.


Symbol	Description	Min	Мах	Unit
	SDMMC_CLK clock period (Identification mode)	20	_	ns
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$\frac{(T_{sdmmc_clk} \times drvsel)/2}{-1.23^{(87)}}$	$\begin{array}{c} (\mathrm{T}_{sdmmc_clk} \times \texttt{drvsel})/2 \\ + 1.69^{\ (87)} \end{array}$	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_clk} \times smplsel)/2^{(88)}$		ns
T _h	Input hold time	$\frac{(T_{sdmmc_clk} \times \texttt{smplsel})}{2^{(88)}}$	—	ns

⁽⁸⁷⁾ drvsel is the drive clock phase shift select value.

⁽⁸⁸⁾ smplsel is the sample clock phase shift select value.

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast	Mode	Unit
Symbol	Description	Min	Max	Min	Max	Onit
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs
T _{clkhigh}	SCL high time	4.7	—	0.6		μs
T _{clklow}	SCL low time	4	_	1.3		μs
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A1	71,015,712	439,960
	A3	71,015,712	439,960
	A5	101,740,800	446,360
Arria V GX	A7	101,740,800	446,360
Allia V GA	B1	137,785,088	457,368
	B3	137,785,088	457,368
	B5	185,915,808	463,128
	B7	185,915,808	463,128
	C3	71,015,712	439,960
Arria V GT	C7	101,740,800	446,360
Allia v GI	D3	137,785,088	457,368
	D7	185,915,808	463,128
Arria V SX	B3	185,903,680	450,968
Allia v SA	B5	185,903,680	450,968
Arria V ST	D3	185,903,680	450,968
	D5	185,903,680	450,968

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{SWIN}	V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Мах
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175		V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	—	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)			V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2		0.78		1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68		0.9	0.68	_	0.9	0.4	_

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transc	eiver Speed	Grade 2	Transce	Unit						
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit				
Reference Clock												
Supported I/O StandardsDedicated reference clock1.2-V PCML, 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPEC												
	RX reference clock pin	RX reference clock pin 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS										
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz				
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz				

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
fixedclk clock frequency	PCIe Receiver Detect	-	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_ clk) frequency	—	100	_	125	100	_	125	MHz

Arria V Device Overview

For more information about device ordering codes.

Receiver

Table 2-24: Receiver Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	
Supported I/O Standards	1.4-V PCML, 1.5-V PCML, 2.5	-V PCML	LVPECL, a	and LVDS				
Data rate (Standard PCS) ⁽¹⁴³⁾ , ⁽¹⁴⁴⁾	—	600	_	9900	600	_	8800	Mbps
Data rate (10G PCS) (143), (144)	_	600		12500	600	_	10312.5	Mbps
Absolute V_{MAX} for a receiver pin $^{(145)}$	—	_		1.2	_	_	1.2	V
Absolute $\mathrm{V}_{\mathrm{MIN}}$ for a receiver pin	_	-0.4			-0.4	_		V

⁽¹⁴³⁾ The line data rate may be limited by PCS-FPGA interface speed grade.

⁽¹⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

⁽¹⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	eiver Spee	ed Grade 3	Unit	
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах		
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	_	600	_	_	600	_	mV	
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth	_	600		_	600	_	mV	
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth		700	_		700	_	mV	
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth		700	_		700	_	mV	
t _{LTR} ⁽¹⁴⁹⁾	—	_	_	10	_	_	10	μs	
t _{LTD} ⁽¹⁵⁰⁾	_	4			4	_		μs	
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	_		4	_		μs	
t _{LTR_LTD_manual} ⁽¹⁵²⁾	_	15			15	_		μs	
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16		_	16	dB	

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

2-28	Transmitter
------	-------------

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	eiver Spee	ed Grade 3	Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
	85- Ω setting	_	85 ± 20%	_		85 ± 20%	_	Ω
Differential on-chip termination resistors	100-Ω setting	—	100 ± 20%	_		100 ± 20%		Ω
	120-Ω setting	_	120 ± 20%			120 ± 20%		Ω
	150-Ω setting	_	150 ± 20%	_		150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650			650		mV
V _{OCM} (DC coupled)	—		650			650		mV
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	ps
Intra-transceiver block transmitter x6 PMA bonded mode channel-to-channel skew		—		120		_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	xN PMA bonded mode	—	—	500	_	_	500	ps

Arria V Device Overview

For more information about device ordering codes.

Mada (164)	Mode (164) Transceiver	PMA Width	20	20	16	16	10	10	8	8
Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8	
Pagistar	2	C3, I3L core speed grade	9.9	9	7.92	7.2	4.9	4.,5	3.92	3.6
Register	3	C4, I4 core speed grade	8.8	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Operating Conditions on page 2-1

10G PCS Data Rate

Table 2-31: 10G PCS Approximate Maximum Data Rate (Gbps) for Arria V GZ Devices

Mode ⁽¹⁶⁵⁾	Transceiver Speed	PMA Width	64	40	40	40	32	32
Mode	Grade	PCS Width	64	66/67	50	40	64/66/67	32
EIEO	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
FIFO	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92
Pagistar	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
Register	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽¹⁶⁵⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Memory	Mode	Resou	rces Used		Perfor	mance		Unit	
Memory	imoue	ALUTs	Memory	C3	C4	I3L	14	Onit	
	Single-port, all supported widths	0	1	650	550	500	450	MHz	
	Simple dual-port, all supported widths	0	1	650	550	500	450	MHz	
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz	
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz	
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz	
	True dual port, all supported widths	0	1	650	550	500	450	MHz	
	ROM, all supported widths	0	1	650	550	500	450	MHz	

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance			< 1	Ω

AV-51002 2017.02.10

Symbol	Conditions		C3, I3I			C4, I4		– Unit
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
t _{x litter} - True Differential I/O	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_		160	ps
Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_		0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	—	_	300	_		325	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_		0.25	UI
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	%
	True Differential I/O Standards		_	200			200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_	_	250	_	_	300	ps
	True Differential I/O Standards		_	150		_	150	ps
TCCS	Emulated Differential I/O Standards	_	—	300			300	ps

Receiver High-Speed I/O Specifications

Table 2-41: Receiver High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions		C3, I3L			C4, I4		Unit
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
True Differential I/O Standards - f _{HSDRDPA} (data rate)	SERDES factor $J = 3$ to 10 (192), (193), (194), (195), (196), (197)	150	_	1250	150		1050	Mbps
	SERDES factor $J \ge 4$ LVDS RX with DPA (193), (195), (196), (197)	150		1600	150		1250	Mbps
	SERDES factor J = 2, uses DDR Registers	(198)	_	(199)	(198)	_	(199)	Mbps
	SERDES factor J = 1, uses SDR Register	(198)		(199)	(198)		(199)	Mbps
	SERDES factor $J = 3$ to 10	(198)	—	(200)	(198)	_	(200)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR Registers	(198)	—	(199)	(198)		(199)	Mbps
	SERDES factor J = 1, uses SDR Register	(198)	_	(199)	(198)	_	(199)	Mbps

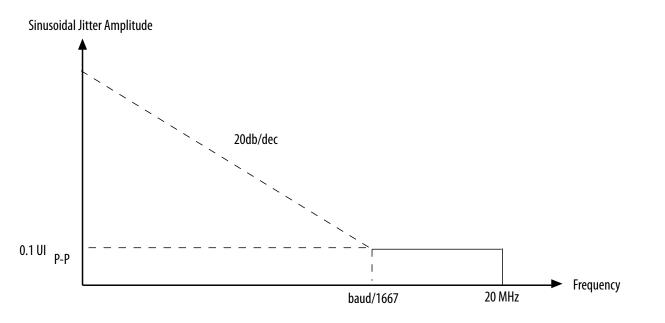
 $^{(192)}$ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁹³⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.

⁽¹⁹⁴⁾ Arria V GZ LVDS serialization and de-serialization factor needs to be x4 and above.

⁽¹⁹⁵⁾ Requires package skew compensation with PCB trace length.

⁽¹⁹⁶⁾ Do not mix single-ended I/O buffer within LVDS I/O bank.


⁽¹⁹⁷⁾ Chip-to-chip communication only with a maximum load of 5 pF.

⁽¹⁹⁸⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

⁽¹⁹⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.

⁽²⁰⁰⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Non DPA Mode High-Speed I/O Specifications

Table 2-46: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.


Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Max	Min	Тур	Мах	Onic
Sampling Window	_			300			300	ps

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 2-7: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Timing waveform for FPP configuration when using a MAX[®] II or MAX V device as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. For FPP ×16, use DATA[15..0]. For FPP ×8, use DATA[7..0]. DATA[31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high when the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Arria V GZ Device Datasheet

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2-8: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1,

t_{CF2ST1} tcfg ;↔ nCONFIG ŤĊF2CK nSTATUS (3) 🕳 tstatus tCF2ST0 CONF_DONE (4) TCL tCH tsT2CK ŤĊF2CD (8) DCLK (6) (7) 1 2 ••• r 2 ••• r 1 \mathbf{D} (5) tCLK DATA[31..0] (8) Word 0 Word User Mode Word 3 • • • Word (n-1) tDH tDH tpsy High-Z User I/O User Mode INIT DONE (9) tCD2UM

Timing when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. To find out the DCLK-to-DATA[] ratio for your system, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 2. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 3. After power-up, the Arria V GZ device holds nSTATUS low for the time as specified by the POR delay.
- 4. After power-up, before and during configuration, CONF_DONE is low.
- 5. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 6. "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 7. If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[31.0] pins prior to sending the first DCLK rising edge.
- 8. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 9. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reconfiguration input for the ALTREMOTE_UPDATE IP core, refer to the "User Watchdog Timer" section.
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reset_timer input for the ALTREMOTE_UPDATE IP core, refer to the "Remote System Upgrade State Machine" section.

User Watchdog Internal Oscillator Frequency Specification

Table 2-65: User Watchdog Internal Oscillator Frequency Specifications

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete placeand-route.

Related Information

Arria V Devices Documentation page

For the Excel-based I/O Timing spreadsheet

Arria V GZ Device Datasheet

Altera Corporation

⁽²²⁶⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²⁷⁾ This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Term	Definition					
	Single-Ended Waveform Positive Channel (p) = V _{0H} V_{0D} Negative Channel (n) = V _{0L} VCM Ground					
	Differential Waveform V_{0D} V_{0D} V_{0D} v_{0D} v_{0D}					
f _{HSCLK}	Left and right PLL input clock frequency.					
f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.					
f _{HSDRDPA}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.					
J	High-speed I/O block—Deserialization factor (width of parallel data bus).					

