

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	7362
Number of Logic Elements/Cells	156000
Total RAM Bits	11746304
Number of I/O	416
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma3d4f31i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCL_GXBL}	GX and SX speed grades—clock network power (left side)	1 08/1 12	1 1/1 15(6)	1 14/1 18	V
V _{CCL_GXBR}	GX and SX speed grades—clock network power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCL_GXBL}	GT and ST speed grades—clock network power (left side)	117	1 20	1 22	V
V _{CCL_GXBR}	GT and ST speed grades—clock network power (right side)	1.17	1.20	1.23	v

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the power supply connection for different data rates.

HPS Power Supply Operating Conditions

Table 1-5: HPS Power Supply Operating Conditions for Arria V SX and ST Devices

This table lists the steady-state voltage and current values expected from Arria V system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Arria V Devices table for the steady-state voltage values expected from the FPGA portion of the Arria V SoC devices.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS core	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC_HPS}	voltage and periphery circuitry power supply	-I3	1.12	1.15	1.18	V

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Figure 1-1: Equation for OCT Variation Without Recalibration

$$R_{OCT} = R_{SCAL} \left(1 + \left(\frac{dR}{dT} \times \Delta T \right) \pm \left(\frac{dR}{dV} \times \Delta V \right) \right)$$

The definitions for the equation are as follows:

- The R_{OCT} value calculated shows the range of OCT resistance with the variation of temperature and V_{CCIO}.
- R_{SCAL} is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

OCT Variation after Power-Up Calibration

Table 1-10: OCT Variation after Power-Up Calibration for Arria V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0°C to 85°C.

Symbol	Description	V _{CCIO} (V)	Value	Unit
dR/dV		3.0	0.100	
		2.5	0.100	
	OCT variation with voltage without recalibration	1.8	0.100	
		1.5	0.100	%/mV
		1.35	0.150	
		1.25	0.150	
		1.2	0.150	

Symbol	Description	V _{CCIO} (V)	Value	Unit
dR/dT		3.0	0.189	
		2.5	0.208	
	OCT variation with temperature without recalibration	1.8	0.266	
		1.5	0.273	%/°C
		1.35	0.200	
		1.25	0.200	
		1.2	0.317	

Pin Capacitance

Table 1-11: Pin Capacitance for Arria V Devices

Symbol	Description	Maximum	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on left/right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins	6	pF
C _{IOVREF}	Input capacitance on V _{REF} pins	48	pF

Hot Socketing

Table 1-12: Hot Socketing Specifications for Arria V Devices

Symbol	Description	Maximum	Unit
I _{IOPIN (DC)}	DC current per I/O pin	300	μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8(10)	mA
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100	mA

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
i/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	—	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_			

Tuble 1 15, Single Ended SSTE, 15TE, and 15OE / O hererence voltage Specifications for Anna v Devices

Transceiver Specifications for Arria V GT and ST Devices

Table 1-26: Reference Clock Specifications	for Arria V GT and ST Devices
--	-------------------------------

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Мах	Onic
Supported I/O standards	1.2 V PCML, 1.4 VPCML,	1.5 V PCML, 2.5	V PCML, Differe	ential LVPECL ⁽⁴⁰⁾	, HCSL, and LVDS
Input frequency from REFCLK input pins	_	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Duty cycle	_	45		55	%
Peak-to-peak differential input voltage	—	200		300 ⁽⁴²⁾ /2000	mV
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30		33	kHz
Spread-spectrum downspread	PCIe		0 to -0.5%		_
On-chip termination resistors	—		100		Ω
V _{ICM} (AC coupled)	—	—	1.2		V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV

⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (41)

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-40 Transceiver Compliance Specification

Quartus Prime 1st	Quartus Prime V _{OD} Setting							
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
16	_	_	9.56	7.73	6.49		_	dB
17	_		10.43	8.39	7.02		_	dB
18	_		11.23	9.03	7.52		_	dB
19	_		12.18	9.7	8.02		_	dB
20	_		13.17	10.34	8.59		_	dB
21	_		14.2	11.1			_	dB
22	_		15.38	11.87			_	dB
23	_		_	12.67	_	_	_	dB
24	_		_	13.48			_	dB
25	_		_	14.37			_	dB
26	_						_	dB
27	_						_	dB
28	_	_	_	_	_	_	_	dB
29	_		_				_	dB
30	_						_	dB
31	_		_				_	dB

Related Information

SPICE Models for Altera Devices

Provides the Arria V HSSI HSPICE models.

Transceiver Compliance Specification

The following table lists the physical medium attachment (PMA) specification compliance of all supported protocol for Arria V GX, GT, SX, and ST devices. For more information about the protocol parameter details and compliance specifications, contact your Altera Sales Representative.

AV-51002 2017.02.10

Symbol	Condition	-I3, -C4		–I5, –C5			-C6			Unit	
Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Ome
	SERDES factor J ≥ 8 ⁽⁷⁶⁾⁽⁷⁸⁾ , LVDS TX with RX DPA	(77)		1600	(77)		1500	(77)	_	1250	Mbps
	SERDES factor J = 1 to 2, Uses DDR Registers	(77)		(79)	(77)		(79)	(77)		(79)	Mbps
Emulated Differential I/ O Standards with Three External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)	_	945	(77)		945	(77)	_	945	Mbps
Emulated Differential I/ O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		200	(77)		200	(77)	_	200	Mbps
t _{x Jitter} -True Differential	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps			160			160		_	160	ps
	Total Jitter for Data Rate < 600 Mbps			0.1		_	0.1	_		0.1	UI

 $^{^{(78)}}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface.

⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean.

⁽⁸⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

DLL Frequency Range Specifications

Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.

Number of DQS Delay Buffer	–I3, –C4	-I5, -C5	-C6	Unit
2	40	80	80	ps

Table 1-57: RGMII RX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Unit
T _{clk} (1000Base-T)	RX_CLK clock period		8	ns
T _{clk} (100Base-T)	RX_CLK clock period		40	ns
T _{clk} (10Base-T)	RX_CLK clock period		400	ns
T _{su}	RX_D/RX_CTL setup time	1		ns
T _h	RX_D/RX_CTL hold time	1		ns

Figure 1-14: RGMII RX Timing Diagram

Table 1-58: Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	MDC clock period	—	400	_	ns
T _d	MDC to MDIO output data delay	10		20	ns
T _s	Setup time for MDIO data	10	_		ns
T _h	Hold time for MDIO data	0			ns

Symbol	Parameter	Minimum	Maximum	Unit
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁴⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1506 ⁽⁹⁵⁾	μs
t _{CF2CK} ⁽⁹⁶⁾	nCONFIG high to first rising edge on DCLK	1506	—	μs
t _{ST2CK} ⁽⁹⁶⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0		ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	—	S
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁹⁷⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4× maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + ($T_{init} \times CLKUSR$ period)	_	_
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

Related Information

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

⁽⁹⁴⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or the nSTATUS low pulse width.

⁽⁹⁵⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

⁽⁹⁶⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽⁹⁷⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

This document covers the electrical and switching characteristics for Arria V GZ devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This document also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

Related Information

Arria V Device Overview

For information regarding the densities and packages of devices in the Arria V GZ family.

Electrical Characteristics

Operating Conditions

When you use Arria V GZ devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Arria V GZ devices, you must consider the operating requirements described in this datasheet.

Arria V GZ devices are offered in commercial and industrial temperature grades.

Commercial devices are offered in -3 (fastest) and -4 core speed grades. Industrial devices are offered in -3L and -4 core speed grades. Arria V GZ devices are offered in -2 and -3 transceiver speed grades.

Table 2-1: Commercial and Industrial Speed Grade Offering for Arria V GZ Devices

C = Commercial temperature grade; I = Industrial temperature grade.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I/O Standard Specifications

The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

Table 2-16: Single-Ended I/O Standards for Arria V GZ Devices

1/O Standard		V _{CCIO} (V)		VII	_ (V)	V _{IH}	$V_{IH}(V)$ $V_{OL}(V)$ $V_{OH}(V)$		V _{OH} (V)	Ι (mΔ)	Ι (m Λ)
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Мах	Min	10L (1114)	юн (шлл)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} – 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{ m CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 imes V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{\rm CCIO}$	0.65 × V _{CCIO}	V _{CCIO} + 0.3	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 2-17: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	0.51 × V _{CCIO}	$0.49 \times V_{CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	

|--|

Symbol/Description	Conditions	Transce	eiver Speed	Grade 2	Transce	eiver Speed	Unit	
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Rise time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	nc
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	—		400			400	ps
Duty cycle	_	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30		33	30	_	33	kHz
Spread-spectrum downspread	PCIe		0 to	_		0 to		%
			-0.5			-0.5		
On-chip termination resistors	—	_	100	_		100		Ω
Absolute V _{MAX}	Dedicated reference clock pin	—		1.6			1.6	V
	RX reference clock pin	_		1.2			1.2	
Absolute V _{MIN}	—	-0.4	_	_	-0.4	—	_	V
Peak-to-peak differential input voltage	—	200		1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	100	00/900/850	(139)	100	00/900/850	mV	
	RX reference clock pin	1.	0/0.9/0.85 (1	40)	1.	0/0.9/0.85(1	mV	
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	mV

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.							
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)			
	0 (166)	0	32	640			
	1(166)	20	33	660			
	2(166)	40	34	680			
	3(166)	60	35	700			
	4 ⁽¹⁶⁶⁾	80	36	720			
	5 ⁽¹⁶⁶⁾	100	37	740			
	6	120	38	760			
V_{OD} differential peak to peak typical	7	140	39	780			
	8	160	40	800			
	9	180	41	820			
	10	200	42	840			
	11	220	43	860			
	12	240	44	880			
	13	260	45	900			
	14	280	46	920			

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	15	300	47	940
	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
V_{OD} differential peak to peak typical	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

AV-51002 2017.02.10

Symbol	Conditions	C3, I3L		C4, I4			Unit	
Symbol		Min	Тур	Мах	Min	Тур	Max	Onit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards ⁽¹⁷⁹⁾	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	625	5	—	525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	—	5		625 (181)	5		525 (181)	MHz

Transmitter High-Speed I/O Specifications

Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

 $^{^{(179)}\,}$ This only applies to DPA and soft-CDR modes.

⁽¹⁸⁰⁾ Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

⁽¹⁸¹⁾ This is achieved by using the LVDS clock network.

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R_S/R_T calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Table 2-52: Worst-Case DCD on Arria V GZ I/O Pins

The DCD numbers do not cover the core clock network.

Symbol	C3, I3L		C	Unit	
Symbol	Min	Max	Min	Max	
Output Duty Cycle	45	55	45	55	%

Configuration Specification

POR Specifications

Table 2-53: Fast and Standard POR Delay Specification for Arria V GZ Devices

Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Arria V Devices" table in the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

POR Delay	Minimum (ms)	Maximum (ms)
Fast	4	12 (202)
Standard	100	300

Related Information

Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Altera Corporation

⁽²⁰²⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} (219)	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	—	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	s
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (221)	_	_

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.