

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	7362
Number of Logic Elements/Cells	156000
Total RAM Bits	11746304
Number of I/O	416
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma3d4f31i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1-4 Recommended Operating Conditions

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.8	100	%
		3.85	68	%
		3.9	45	%
		3.95	28	%
		4	15	%
		4.05	13	%
		4.1	11	%
		4.15	9	%
Vi (AC)	AC input voltage	4.2	8	%
		4.25	7	%
		4.3	5.4	%
		4.35	3.2	%
		4.4	1.9	%
		4.45	1.1	%
		4.5	0.6	%
		4.55	0.4	%
		4.6	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

Recommended Operating Conditions

Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

I/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I_{a} (mA)
	Min	Max	Min	Мах	Max	Min	Мах	Min	(mA)	
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	_	$V_{REF} - 0.2$	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	_	V _{REF} – 0.13	$V_{REF} + 0.13$	_	V _{REF} – 0.22	V _{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard	V _{CCIO} (V)		V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Мах	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	—	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	—	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onic	
Run length	—	—	_	200	—		200	UI	
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Refer to C Gain and Response G	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.						

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transc	eiver Speed G	irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Supported I/O standards		1.5 V PCML						
Data rate	_	611		6553.6	611	_	3125	Mbps
V _{OCM} (AC coupled)	_	_	650	_		650	_	mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	_	85	_		85	_	Ω
Differential on-chip	100- Ω setting	—	100	—	_	100	_	Ω
termination resistors	120- Ω setting		120			120		Ω
	150-Ω setting	_	150	_		150	_	Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps	—	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode	_	_	180	_	—	180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Symbol/Description	Condition	Т	ransceiver Speed Gr	ade 3	Unit	
Symbol/Description	Condition	Min	Тур Мах		Onic	
$t_{LTD_manual}^{(51)}$		4	_	_	μs	
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	_	—	μs	
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100	ppm			
Run length	_		— 200		UI	
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE and DC Gain Data Rates ≤	Response at Data R for Arria V GX, GT, 3.25 Gbps across Su GX, GT, SX, ar	Rates > 3.25 Gbps acr , SX, and ST Devices pported AC Gain an nd ST Devices diagra	oss Supported AC Gain and CTLE Response at d DC Gain for Arria V ums.	

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Sumbol/Description	Condition	Tran	sceiver Speed Gra	Unit			
Symbol Description	Condition	Min	Тур	Max	onit		
Supported I/O standards	1.5 V PCML						
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps		
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps		
V _{OCM} (AC coupled)	_		650		mV		
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV		

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

DLL Frequency Range Specifications

Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit	
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz	

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.

Number of DQS Delay Buffer	–I3, –C4	-I5, -C5	-C6	Unit
2	40	80	80	ps

Figure 1-9: SPI Master Timing Diagram

Table 1-53: SPI Slave Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	20	—	ns
T _s	MOSI Setup time	5	—	ns
T _h	MOSI Hold time	5	_	ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8	—	ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8	—	ns
T _d	MISO output delay		6	ns

Figure 1-19: NAND Data Write Timing Diagram

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹²	Available Minimum		Fast Model		Slow Model					llnit
)	Settings	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	- I 3	-15	
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

Transceiver Power Supply Requirements

Table 2-7: Transceiver Power Supply Voltage Requirements for Arria V GZ Devices

Conditions	VCCR_GXB and VCCT_GXB ⁽¹²²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	1.05			
• Data rate > 10.3 Gbps.				
• DFE is used.				
If ANY of the following conditions are true ⁽¹²³⁾ :	1.0	3.0		
 ATX PLL is used. Data rate > 6.5Gbps. DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used. 			1.5	V
If ALL of the following conditions are true:	0.85	2.5		
 ATX PLL is not used. Data rate ≤ 6.5Gbps. DFE, AEQ, and EyeQ are not used. 				

DC Characteristics

Supply Current

Standby current is the current drawn from the respective power rails used for power budgeting.

Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

⁽¹²²⁾ If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to 0.85 V, they can be shared with the VCC core supply.

⁽¹²³⁾ Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

Bus Hold Specifications

Table 2-9: Bus Hold Parameters for Arria V GZ Devices

							۷ _C	CIO					
Parameter	Symbol	Conditions	1.2	2 V	1.5	5 V	1.8	3 V	2.5	5 V	3.0	V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0		50.0	_	70.0	_	μΑ
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Low overdrive current	I _{ODL}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μΑ
High overdrive current	I _{ODH}	$0V < V_{IN} < V_{CCIO}$	—	-120	_	-160	_	-200		-300	_	-500	μΑ
Bus-hold trip point	V _{TRIP}		0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block.

Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices

OCT calibration accuracy is valid at the time of calibration only.

Sumbol	Description	Conditions	Calibration Ac	curacy	Unit
Symbol	Description	Conditions	C3, I3L	C4, I4	Onit
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2 V	±15	±15	%
48-Ω, 60-Ω, 80-Ω, and 240-Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , 80- Ω , and 240- Ω setting)	$V_{CCIO} = 1.2 V$	±15	±15	%
50- Ω R _T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2 V	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω R _T	Internal parallel termination with calibration ($20-\Omega$, $30-\Omega$, $40-\Omega$, $60-\Omega$, and $120-\Omega$ setting)	V _{CCIO} = 1.5, 1.35, 1.25 V	-10 to +40	-10 to +40	%
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- Ω R _{S_left_shift} setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 V	±15	±15	%

Table 2-11: OCT Without Calibration Resistance Tolerance Specifications for Arria V GZ Devices

Symbol	Description	Conditions	Resistance	Unit	
Symbol		Conditions	C3, I3L		C4, I4
25-Ω R, 50-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0 and 2.5 V	±40	±40	%

	V _{IL(DC)} (V)		V _{IH(DC}	_{_)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OL} (V) V _{OH} (V)		L. (mA)
i/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	i _{ol} (mA)	I _{oh} (MA)
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I	—	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	—	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	-
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	_
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.2	V _{REF} + 0.2	0.4	$V_{\rm CCIO}$ – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	$V_{\rm CCIO}$ – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{ m CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{ m CCIO}$	16	-16
HSUL-12	—	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} - 0.22	V_{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Arria V GZ Device Datasheet

Symbol/Description	Conditions -	Transce	eiver Speed (Grade 2	Transce	eiver Speed (Grade 3	Unit	
Symbol/Description		Min	Тур	Мах	Min	Тур	Мах	Onic	
Transmitter REFCLK Phase Noise (622 MHz) ⁽¹⁴¹⁾	100 Hz	—	_	-70	—	—	-70	dBc/Hz	
	1 kHz	—	—	-90		—	-90	dBc/Hz	
	10 kHz	—	—	-100	_	—	-100	dBc/Hz	
	100 kHz	—	—	-110	_	—	-110	dBc/Hz	
	≥1 MHz	—	—	-120		—	-120	dBc/Hz	
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁴²⁾	10 kHz to 1.5 MHz (PCIe)	_	_	3	_	_	3	ps (rms)	
R _{REF}	—	—	1800 ±1%	_		1800 ±1%		Ω	

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transceiver Clocks

Table 2-23: Transceiver Clocks Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

 $^{^{(141)}}$ To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20 *log(f/622).

⁽¹⁴²⁾ To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz \times 100/f.

Symbol	Parameter	Min	Тур	Мах	Unit
t (173) (175)	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
·001P)_10 ,	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		60	mUI (p-p)
t _{FOUTPJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
(173) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_		60	mUI (p-p)
t (173) (175) (176)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
"FOUTCCJ_IO",	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
to	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
^L CASC_OUTPJ_DC ⁽¹¹³⁾ , (177)	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)			17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Memorv	Mode	Resou	rces Used			Unit		
wieniory	moue	ALUTs	Memory	C3	C4	I3L	14	
	Single-port, all supported widths	0	1	650	550	500	450	MHz
Sim Sim opti	Simple dual-port, all supported widths	0	1	650	550	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz
	True dual port, all supported widths	0	1	650	550	500	450	MHz
	ROM, all supported widths	0	1	650	550	500	450	MHz

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Мах	Unit
I _{bias} , diode source current	8		200	μΑ
V _{bias,} voltage across diode	0.3		0.9	V
Series resistance		_	< 1	Ω

JTAG Configuration Specifications

Table 2-54: JTAG Timing Parameters and Values for Arria V GZ Devices	;
--	---

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 (203)		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output	_	11 (204)	ns
t _{JPZX}	JTAG port high impedance to valid output		14 (204)	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Arria V GZ Device Datasheet

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

⁽²⁰⁴⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{IPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 2-7: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Timing waveform for FPP configuration when using a MAX[®] II or MAX V device as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. For FPP ×16, use DATA[15..0]. For FPP ×8, use DATA[7..0]. DATA[31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high when the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Arria V GZ Device Datasheet

Related Information

Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Initialization

Table 2-61: Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices

Initialization Clock Source	Configuration Schemes	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, FPP	12.5	8576
CLKUSR ⁽²²²⁾	PS, FPP	125	
	AS	100	
DCLK	PS, FPP	125	

Configuration Files

Use the following table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size.

Arria V GZ Device Datasheet

⁽²²¹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²²⁾ To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Term	Definition		
	Single-Ended WaveformVODPositive Channel (p) = VOHVCMNegative Channel (n) = VOLGroundGround		
	Differential Waveform V_{0D} V_{0D} V_{0D} V_{0D}		
f _{HSCLK}	Left and right PLL input clock frequency.		
f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.		
f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		
J	High-speed I/O block—Deserialization factor (width of parallel data bus).		

