

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma5d4f27c4g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
V _{CC_AUX_SHARED}	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Recommended Operating Conditions on page 1-4

Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide
 Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

AV-51002

2017.02.10

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

I/O Standard	V _{IL}	_{-(DC)} (V)	V _{IH(De}	_{C)} (V)	$V_{IL(AC)}(V)$ $V_{IH(AC)}(V)$		V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
i/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	IOH (IIIA)
HSTL-15 Class II	_	V _{REF} – 0.1	$V_{REF} + 0.1$	_	V _{REF} - 0.2	$V_{REF} + 0.2$	0.4	V _{CCIO} - 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	$V_{REF} + 0.08$	V _{CCIO} + 0.15	V _{REF} – 0.15	$V_{REF} + 0.15$	$0.25 \times V_{CCIO}$	$0.75 \times V_{\text{CCIO}}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	$V_{REF} + 0.08$	V _{CCIO} + 0.15	V _{REF} – 0.15	$V_{REF} + 0.15$	$0.25 \times V_{CCIO}$	$0.75 \times V_{\text{CCIO}}$	16	-16
HSUL-12	_	V _{REF} - 0.13	$V_{REF} + 0.13$	_	V _{REF} - 0.22	$V_{REF} + 0.22$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		V _{SW}	_{ING(DC)} (V)	V _{X(AC)} (V)			V _{SWING(AC)} (V)		
i, o Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	$V_{\rm CCIO} + 0.6$	$V_{\rm CCIO}/2 - 0.2$	_	V _{CCIO} /2 + 0.2	0.62	$V_{\rm CCIO}$ + 0.6	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{\rm CCIO}$ + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 - 0.15	_	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$	
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$	

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Max	Offic
	10 Hz	_	_	-50	dBc/Hz
	100 Hz	_	_	-80	dBc/Hz
Transmitter REFCLK phase noise(43)	1 KHz	_	_	-110	dBc/Hz
Transmitter REPCER phase noise	10 KHz	_	_	-120	dBc/Hz
	100 KHz	_	_	-120	dBc/Hz
	≥ 1 MHz	_	_	-130	dBc/Hz
R _{REF}	_	_	2000 ±1%	_	Ω

Table 1-27: Transceiver Clocks Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
3yiilbol/Description	Condition	Min	Тур	Max	Offic
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	MHz
Transceiver Reconfiguration Controller IP (mgmt_clk_clk) clock frequency	_	75	_	125	MHz

Table 1-28: Receiver Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Ti	ransceiver Speed Gra	Unit			
	Condition	Min	Тур	Max	Offit		
Supported I/O Standards	1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS						
Data rate (6-Gbps transceiver)(44)	_	611	_	6553.6	Mbps		

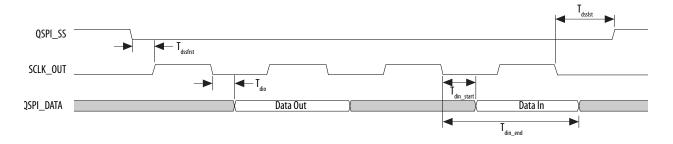
Arria V GX, GT, SX, and ST Device Datasheet

The transmitter REFCLK phase jitter is 30 ps p-p (5 ps RMS) with bit error rate (BER) 10⁻¹², equivalent to 14 sigma.

To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial RapidIO® (SRIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250


	Symbol	Condition		−I3, −C4			−l5, −C5		-C6			Unit
	Зупівої	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Offic
	TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps
	1003	Emulated Differential I/O Standards		_	300	_	_	300	_	_	300	ps
	True Differential I/O Standards - f _{HSDRDPA}	SERDES factor J =3 to 10 ⁽⁷⁶⁾	150	_	1250	150	_	1250	150	_	1050	Mbps
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps
Receiver	f _{HSDR} (data rate)	SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps
		SERDES factor J = 1 to 2, uses DDR registers	(77)	_	(79)	(77)	_	(79)	(77)	_	(79)	Mbps
DPA Mode	DPA run length	_	_	_	10000	_	_	10000	_	_	10000	UI
Soft-CDR Mode	Soft-CDR ppm tolerance	_	_	_	300	_	_	300	_	_	300	±ppm
Non-DPA Mode	Sampling Window	_	_	_	300	_	_	300	_	_	300	ps

You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

Symbol	Description	Min	Тур	Max	Unit
$T_{ m din_end}$	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$	_	_	ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

Related Information

Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

Table 1-52: SPI Master Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T_{clk}	CLK clock period	16.67	_	ns
T_{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)	_	ns

⁽⁸⁵⁾ R_{delay} is set by programming the register qspiregs.rddatacap. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Figure 1-9: SPI Master Timing Diagram

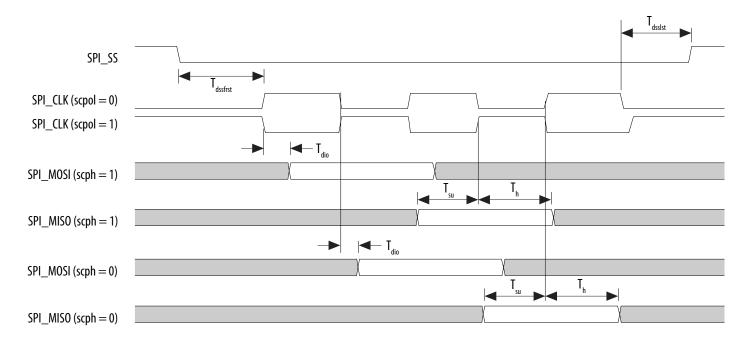


Table 1-53: SPI Slave Timing Requirements for Arria V Devices

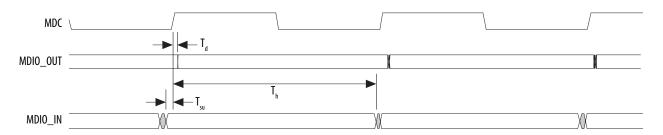
The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T_{clk}	CLK clock period	20	_	ns
T_s	MOSI Setup time	5	_	ns
T_h	MOSI Hold time	5	_	ns
T_{suss}	Setup time SPI_SS valid before first clock edge	8	_	ns
$T_{ m hss}$	Hold time SPI_SS valid after last clock edge	8	_	ns
T_d	MISO output delay	_	6	ns

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.


The SD/MMC interface calibration support will be available in a future release of the preloader through the SoC EDS software update.

Symbol	Description	Min	Max	Unit
	SDMMC_CLK clock period (Identification mode)	20	_	ns
T_{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
$T_{sdmmc_clk_out}$ (interface output clock)	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
$T_{ m dutycycle}$	SDMMC_CLK_OUT duty cycle	45	55	%
T_d	SDMMC_CMD/SDMMC_D output delay	$(T_{sdmmc_clk} \times \texttt{drvsel})/2 - 1.23^{(87)}$	$\begin{array}{c} (T_{sdmmc_clk} \times \texttt{drvsel})/2 \\ + 1.69^{(87)} \end{array}$	ns
$\mathrm{T_{su}}$	Input setup time	$1.05 - (T_{\rm sdmmc_clk} \times \\ \rm smplsel)/2^{(88)}$	_	ns
T_{h}	Input hold time	$(T_{sdmmc_clk} \times smplsel)/ 2^{(88)}$	_	ns

 $^{^{(87)}}$ drvsel is the drive clock phase shift select value.

⁽⁸⁸⁾ smplsel is the sample clock phase shift select value.

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Cumbal	Description	Standaı	d Mode	Fast Mode		Unit	
Symbol	Description	Min	Max	Min	Max	Onit	
T_{clk}	Serial clock (SCL) clock period	10	_	2.5	_	μs	
T _{clkhigh}	SCL high time	4.7	_	0.6	_	μs	
T_{clklow}	SCL low time	4	_	1.3	_	μs	
T_s	Setup time for serial data line (SDA) data to SCL	0.25	_	0.1	_	μs	
T_{h}	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T_d	SCL to SDA output data delay	_	0.2	_	0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs	
T _{hd_start}	Hold time for a repeated start condition	4	_	0.6	_	μs	
T _{su_stop}	Setup time for a stop condition	4	_	0.6	_	μs	

- **PS Configuration Timing** on page 1-81
- AS Configuration Timing
 Provides the AS configuration timing waveform.

DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
Delik frequency in A3 configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing

Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t_{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nstatus low pulse width	268	1506(103)	μs
t _{CF2ST1}	nconfig high to nstatus high	_	1506(104)	μs

 $^{^{(103)} \ \} You \ can \ obtain \ this \ value \ if \ you \ do \ not \ delay \ configuration \ by \ extending \ the \ nconfig \ or \ nstatus \ low \ pulse \ width.$

Send Feedback

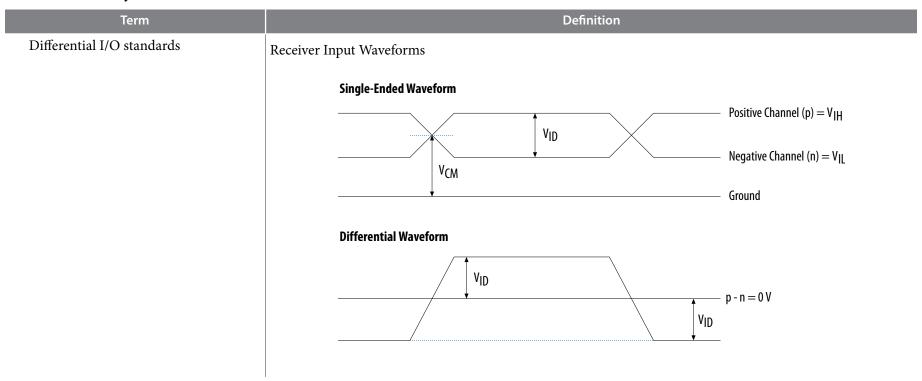
⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CK} ⁽¹⁰⁵⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁵⁾	nstatus high to first rising edge of DCLK	2	_	μs
$t_{ m DSU}$	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t_{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t_{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t_{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	s
t_{CLK}	DCLK period	1/f _{MAX}	_	s
f_{MAX}	DCLK frequency	_	125	MHz
$t_{\rm CD2UM}$	CONF_DONE high to user mode(106)	175	437	μs
t_{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (T_{init} × CLKUSR period)	_	
T _{init}	Number of clock cycles required for device initialization	8,576	_	Cycles

PS Configuration Timing

Provides the PS configuration timing waveform.

Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet


 $[\]begin{array}{ll} ^{(105)} \ \ \text{If nstatus is monitored, follow the } \ t_{\text{CF2CK}} \ \text{specification.} \ \text{If nstatus is not monitored, follow the } \ t_{\text{CF2CK}} \ \text{specification.} \end{array}$

⁽¹⁰⁶⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Symbol	Parameter	Typical	Unit
$\mathrm{D}_{\mathrm{OUTBUF}}$		0 (default)	ps
	Rising and/or falling edge delay	50	ps
		100	ps
		150	ps

Glossary

Table 1-78: Glossary

Arria V GX, GT, SX, and ST Device Datasheet **Altera Corporation**

Symbol	Description	Minimum	Maximum	Unit
V_{I}	DC input voltage	-0.5	3.8	V
T_{J}	Operating junction temperature	-55	125	°C
T_{STG}	Storage temperature (No bias)	-65	150	°C
I _{OUT}	DC output current per pin	-25	40	mA

Table 2-3: Transceiver Power Supply Absolute Conditions for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V_{CCA_GXBL}	Transceiver channel PLL power supply (left side)	-0.5	3.75	V
V _{CCA_GXBR}	Transceiver channel PLL power supply (right side)	-0.5	3.75	V
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	-0.5	1.35	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	-0.5	1.35	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	-0.5	1.35	V
V _{CCR_GXBL}	Receiver analog power supply (left side)	-0.5	1.35	V
V _{CCR_GXBR}	Receiver analog power supply (right side)	-0.5	1.35	V
V _{CCT_GXBL}	Transmitter analog power supply (left side)	-0.5	1.35	V
V _{CCT_GXBR}	Transmitter analog power supply (right side)	-0.5	1.35	V
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	-0.5	1.8	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	-0.5	1.8	V

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in the following table. They may also undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

Hot Socketing

Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹²⁴⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Internal Weak Pull-Up Resistor

Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

Symbol	Description	V _{CCIO} Conditions (V) (125)	Value (126)	Unit
		3.0 ±5%	25	kΩ
		2.5 ±5%	25	kΩ
	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option.	1.8 ±5%	25	kΩ
R_{PU}		1.5 ±5%	25	kΩ
		1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{\rm IOPIN}| = C \, dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Altera Corporation

Arria V GZ Device Datasheet

The pin pull-up resistance values may be lower if an external source drives the pin higher than $V_{\rm CCIO}$.

 $^{^{(126)}}$ These specifications are valid with a $\pm 10\%$ tolerance to cover changes over PVT.

Symbol/Description	Conditions	Transceiver Speed Grade 2		Transceiver Speed Grade 3			Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
Rise time	Measure at ±60 mV of differential signal (138)	_	_	400	_	_	400	200	
Fall time	Measure at ±60 mV of differential signal (138)	_	_	400	_	_	400	ps	
Duty cycle	_	45	_	55	45	_	55	%	
Spread-spectrum modulating clock frequency	PCI Express ®(PCIe)	30	_	33	30	_	33	kHz	
Spread-spectrum downspread	PCIe	_	0 to	_	_	0 to	_	%	
			-0.5			-0.5			
On-chip termination resistors	_	_	100	_	_	100	_	Ω	
Absolute V _{MAX}	Dedicated reference clock pin	_	_	1.6	_	_	1.6	V	
	RX reference clock pin	_	_	1.2	_	_	1.2		
Absolute V _{MIN}	_	-0.4	_	_	-0.4	_	_	V	
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV	
V _{ICM} (AC coupled)	Dedicated reference clock pin	1000/900/850 (139)		1000/900/850 (139)		mV			
-	RX reference clock pin	1.	.0/0.9/0.85	140)	1.0/0.9/0.85 ⁽¹⁴⁰⁾			mV	
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV	

Refclk performance requires to meet transmitter refclk phase noise specification. The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.

⁽¹⁴⁰⁾ This supply follows VCCR_GXB

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transc	- Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Offic
$\label{eq:maximum peak-to-peak differential} \\ input voltage \ V_{ID} \ (diff \ p-p) \ before \\ device \ configuration$	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after	$V_{CCR_GXB} = 1.0 \text{ V}$ $(V_{ICM} = 0.75 \text{ V})$	_	_	1.8	_	_	1.8	V
device configuration (146)	$V_{\text{CCR_GXB}} = 0.85 \text{ V}$ $(V_{\text{ICM}} = 0.6 \text{ V})$	_	_	2.4	_	_	2.4	V
Minimum differential eye opening at receiver serial input pins (147)(148)	_	85	_	_	85	_	_	mV
	85– Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
Differential on-chip termination	100–Ω setting	_	100 ± 30%	_	_	100 ± 30%	_	Ω
resistors	120–Ω setting	_	120 ± 30%	_	_	120 ± 30%	_	Ω
	150–Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω

The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to $4 \times$ (absolute V_{MAX} for receiver pin - V_{ICM}).

The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	eiver Spe	ed Grade 3	Unit
symbol/ bescription	Collations	Min	Тур	Max	Min	Тур	Max	Offic
	$V_{CCR_GXB} = 0.85 \text{ V}$ full bandwidth	_	600	_	_	600	_	mV
$ m V_{ICM}$ (AC and DC coupled)	$V_{CCR_GXB} = 0.85 \text{ V}$ half bandwidth	_	600	_	_	600	_	mV
V _{ICM} (AC and DC coupled)	$V_{CCR_GXB} = 1.0 \text{ V}$ full bandwidth	_	700	_	_	700	_	mV
	$V_{CCR_GXB} = 1.0 \text{ V}$ half bandwidth	_	700	_	_	700	_	mV
t _{LTR} (149)	_	_	_	10	_	_	10	μs
t _{LTD} (150)	_	4	_	_	4	_	_	μs
t _{LTD_manual} (151)	_	4	_	_	4	_	_	μs
t _{LTR_LTD_manual} (152)	_	15	_	_	15	_	_	μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)	_	_	16	_	_	16	dB

Altera Corporation

Arria V GZ Device Datasheet

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

⁽¹⁵⁰⁾ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

 t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{LTR_LTD_manual}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol	Conditions		C3, I3L			C4, I4		Unit	
Syllibol	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
t _{x Jitter} - True Differential I/O Standards	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_	_	160	ps	
	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_		0.1	UI	
t _{x Jitter} - Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	300	_	_	325	ps	
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_		0.25	UI	
$t_{ m DUTY}$	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	%	
	True Differential I/O Standards		_	200	_	_	200	ps	
$t_{RISE} \& t_{FALL}$	Emulated Differential I/O Standards with three external output resistor networks	_	_	250	_	_	300	ps	
	True Differential I/O Standards	_	_	150	_	_	150	ps	
TCCS	Emulated Differential I/O Standards	_	_	300	_	_	300	ps	

Receiver High-Speed I/O Specifications

Table 2-41: Receiver High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Parameter	Minimum	Maximum	Unit
t_{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum dclk period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) ⁽²¹⁵⁾	_	_

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Altera Corporation Arria V GZ Device Datasheet

To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Symbol	Parameter	Minimum	Maximum	Unit
t_{CO}	DCLK falling edge to AS_DATA0/ASDO output	_	4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	_	ns
$t_{\rm H}$	Data hold time after falling edge on DCLK	0	_	ns
t_{CD2UM}	CONF_DONE high to user mode (216)	175	437	μs
$t_{\rm CD2CU}$	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK — period		_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Altera Corporation

Arria V GZ Device Datasheet

⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.