E·XFL

Intel - 5AGXMA5D4F27C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma5d4f27c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Core veltage power supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC}	Core voltage power supply	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration pine power supply	3.0 V	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins power supply	2.5 V	2.375	2.5	2.625	V
	-	1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	—	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	_	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit	
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V	
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v	
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V	
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v	
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1.17	1.20	1.23	V	
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17 1.20		1.23	v	
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V	
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v	
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1.17	1.20	1.23	V	
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17 1.20		1.23	v	
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.373	v	

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Figure 1-1: Equation for OCT Variation Without Recalibration

$$R_{OCT} = R_{SCAL} \left(1 + \left(\frac{dR}{dT} \times \Delta T \right) \pm \left(\frac{dR}{dV} \times \Delta V \right) \right)$$

The definitions for the equation are as follows:

- The R_{OCT} value calculated shows the range of OCT resistance with the variation of temperature and V_{CCIO}.
- R_{SCAL} is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

OCT Variation after Power-Up Calibration

Table 1-10: OCT Variation after Power-Up Calibration for Arria V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0°C to 85°C.

Symbol	Description	V _{CCIO} (V)	Value	Unit
		3.0	0.100	
		2.5	0.100	
	OCT variation with voltage without recalibration	1.8	0.100	
dR/dV		1.5	0.100	%/mV
		1.35	0.150	
		1.25	0.150	
		1.2	0.150	

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4		Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Run length	—	—	_	200	_	_	200	UI
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Gain and Response	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.					

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4		Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards		1.5 V PCML						
Data rate	_	611	_	6553.6	611		3125	Mbps
V _{OCM} (AC coupled)			650	_		650		mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	—	85	_		85		Ω
Differential on-chip	100- Ω setting	—	100	_		100		Ω
termination resistors	120- Ω setting	—	120	_		120		Ω
	150-Ω setting	—	150	_		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps		_	15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode			180			180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Symbol/Description	Condition	Transceiver Speed Grade 3		ade 3	Unit
Symbol/Description	Condition	Min	Тур	Мах	Ont
t _{LTD_manual} ⁽⁵¹⁾	—	4	—	_	μs
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	—	_	μs
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100, 125, 200, 250, 300, 500, and 1000 ppm			ppm
Run length	—	_	_	200	UI
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.			

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit			
Symbol/Description	Condition	Min	Тур	Max		
Supported I/O standards	1.5 V PCML					
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps	
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps	
V _{OCM} (AC coupled)	—		650		mV	
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV	

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Typical TX V_{OD} Setting for Arria V Transceiver Channels with termination of 100 Ω

Table 1-32: Typical TX Vor	Setting for Arria V Transceive	r Channels with termination of 100 Ω

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	6 ⁽⁵⁹⁾	120	34	680
	7 ⁽⁵⁹⁾	140	35	700
	8(59)	160	36	720
	9	180	37	740
	10	200	38	760
	11	220	39	780
	12	240	40	800
	13	260	41	820
	14	280	42	840
V _{OD} differential peak-to-peak typical	15	300	43	860
-) F	16	320	44	880
	17	340	45	900
	18	360	46	920
	19	380	47	940
	20	400	48	960
	21	420	49	980
	22	440	50	1000
	23	460	51	1020
	24	480	52	1040

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

⁽⁵⁹⁾ Only valid for data rates \leq 5 Gbps.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

1-44	PLL Specifications
------	--------------------

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	5	_	800 ⁽⁶¹⁾	MHz
f_{IN} Input clock frequency $-4 \text{ speed grade} \qquad 5 \qquad -4 \text{ speed grade} \qquad 5 \qquad -4 \text{ speed grade} \qquad 5 \qquad -5 \text{ speed grade} \qquad 5 \qquad -5 \text{ speed grade} \qquad 5 \qquad -6 \text{ speed grade} \qquad -6 \text{ speed grade} \qquad -6 \text{ speed grade} \qquad 600 \qquad -2 \text{ speed grade} \qquad 600 \qquad -4 \text{ speed grade} \qquad 600 \qquad -4 \text{ speed grade} \qquad 600 \qquad -6 \text{ speed grade} \qquad -6 $	_	800 ⁽⁶¹⁾	MHz			
IIN	input clock frequency	-5 speed grade	5	_	750 ⁽⁶¹⁾	MHz
		-6 speed grade	5 - $800^{(61)}$ 5 - $800^{(61)}$ 5 - $750^{(61)}$ 5 - $625^{(61)}$ 5 - 325 50 - 160 600 - 1600 600 - 1600 600 - 1600 600 - 1600 40 - 60 - $500^{(63)}$ - - - $500^{(63)}$ - - $500^{(63)}$	MHz		
f _{INPFD}			5	_	325	MHz
f _{FINPFD}		_	50	_	160	MHz
		-3 speed grade	600	_	1600	MHz
f (62)	PLL voltage-controlled oscillator	-4 speed grade	600	_	1600	MHz
IVCO	(VCO) operating range	$\begin{array}{c c c c c c c c c } -4 & \text{speed grade} & 5 \\ \hline -4 & \text{speed grade} & 5 \\ \hline -5 & \text{speed grade} & 5 \\ \hline -6 & \text{speed grade} & 5 \\ \hline -6 & \text{speed grade} & 5 \\ \hline -6 & \text{speed grade} & -3 & \text{speed grade} & 600 \\ \hline -4 & \text{speed grade} & 600 \\ \hline -5 & \text{speed grade} & 600 \\ \hline -6 & \text{speed grade} & -1 \\ \hline -4 & \text{speed grade} & -1 \\ \hline -5 & \text{speed grade} & -1 \\ \hline \end{array}$	600	_	1600	MHz
		-6 speed grade	600	_	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	_	40	_	60	%
		-3 speed grade	_	_	500 ⁽⁶³⁾	MHz
f	Output frequency for internal global or	-4 speed grade	_	_	500 ⁽⁶³⁾	MHz
f _{OUT}	regional clock	-5 speed grade	_	-	500 ⁽⁶³⁾	MHz
		-3 speed grade 5 $ -4$ speed grade 5 $ -5$ speed grade 5 $ -6$ speed grade 5 $ -6$ speed grade 5 $-$ frequency to the tor (PFD) $ 50$ $ -3$ speed grade 600 $ -4$ speed grade 600 $ -5$ speed grade 600 $ -4$ speed grade 600 $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -6$ speed grade $ -3$ speed grade $ -4$ speed grade $ -$	400 ⁽⁶³⁾	MHz		

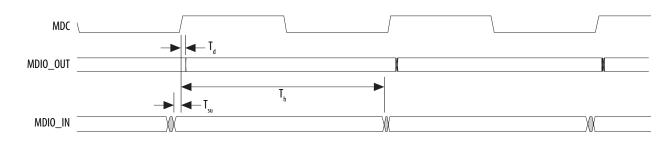
⁽⁶¹⁾ This specification is limited in the Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽⁶²⁾ The VCO frequency reported by the Quartus Prime software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽⁶³⁾ This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.

1-62 SPI Timing Characteristics

Symbol	Description	Min	Мах	Unit
T _h	SPI MISO hold time	1	_	ns
T _{dutycycle}	SPI_CLK duty cycle	45	55	%
T _{dssfrst}	Output delay SPI_SS valid before first clock edge	8		ns
T _{dsslst}	Output delay SPI_SS valid after last clock edge	8		ns
T _{dio}	Master-out slave-in (MOSI) output delay	-1	1	ns


Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸⁶⁾ This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast	Mode	Unit	
Symbol	Description	Min	Max	Min	Max	Onit	
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs	
T _{clkhigh}	SCL high time	4.7	—	0.6		μs	
T _{clklow}	SCL low time	4	_	1.3		μs	
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs	
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs	
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs	
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs	

Symbol	Parameter	Minimum	Maximum	Unit
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁴⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽⁹⁵⁾	μs
t _{CF2CK} ⁽⁹⁶⁾	nCONFIG high to first rising edge on DCLK	1506		μs
t _{ST2CK} ⁽⁹⁶⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0		ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁹⁷⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4× maximum DCLK period		
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} × Clkusr period)		_
T _{init}	Number of clock cycles required for device initialization	8,576		Cycles

Related Information

FPP Configuration Timing

Provides the FPP configuration timing waveforms.

⁽⁹⁴⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or the nSTATUS low pulse width.

⁽⁹⁵⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

⁽⁹⁶⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽⁹⁷⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Initialization

Table 1-71: Initialization Clock Source Option and the Maximum Frequency for Arria V Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles	
Internal Oscillator	AS, PS, and FPP	12.5		
CLKUSR ⁽¹⁰⁷⁾	PS and FPP	125	Т	
	AS	100	– T _{init}	
DCLK	PS and FPP	125		

Configuration Files

Table 1-72: Uncompressed .rbf Sizes for Arria V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus Prime software. However, for a specific version of the Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁰⁷⁾ To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus Prime software from the **General** panel of the **Device and Pin Options** dialog box.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹² Available		Minimum	Fast Model		Slow Model					llait	
) Settings	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	- I 3	-15	Unit		
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns	
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns	
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns	
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns	

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

Term	Definition
t _{FALL}	Signal high-to-low transition time (80–20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input
t _{OUTPJ_IO}	Period jitter on the GPIO driven by a PLL
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20–80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/$ (Receiver Input Clock Frequency Multiplication Factor) = t_C/w)
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-96 Document Revision History

Date	Version	Changes
June 2015	2015.06.16	• Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		True mini-LVDS output standard: data rates of up to 400 Mbps
		 Added note in the condition for Transmitter—Emulated Differential I/O Standards f_{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		Updated T _h location in I ² C Timing Diagram.
		Updared T _{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t _{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		 FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CCPT}	Power supply for programmable power technology	_	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	_	2.375	2.5	2.625	V
V _{CCPD} ⁽¹¹⁶	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
)	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply	_	1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA} _	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD} FPLL	PLL digital voltage regulator power supply	_	1.45	1.5	1.55	V
V _{CCBAT} (117	Battery back-up power supply (For design security volatile key register)	_	1.2	—	3.0	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.
Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁶⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.

⁽¹¹⁷⁾ If you do not use the design security feature in Arria V GZ devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Arria V GZ power-on-reset (POR) circuitry monitors V_{CCBAT}. Arria V GZ devices do not exit POR if V_{CCBAT} is not powered up.

2-28	Transmitter
------	-------------

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2 Transceiver Speed Grade 3					– Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
Differential on-chip termination resistors	85- Ω setting	_	85 ± 20%	_		85 ± 20%	_	Ω
	100-Ω setting	—	100 ± 20%	_		100 ± 20%		Ω
resistors	120-Ω setting	_	120 ± 20%	_		120 ± 20%		Ω
	150-Ω setting	_	150 ± 20%	_		150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650			650		mV
V _{OCM} (DC coupled)	—		650			650		mV
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	x6 PMA bonded mode	—		120		_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	xN PMA bonded mode	—	—	500	_	_	500	ps

Related Information

Arria V Device Overview

For more information about device ordering codes.

2-32 Standard PCS Data Rate

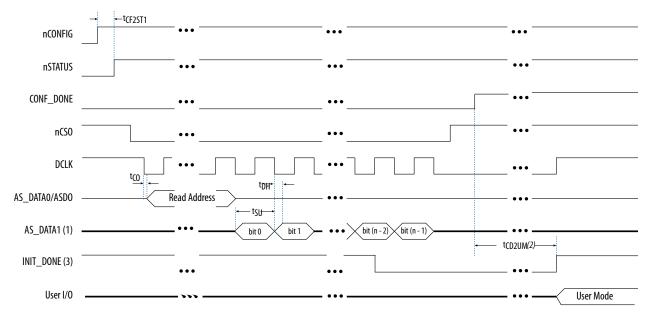
Clock Network	ATX PLL			CMU PLL ⁽¹⁶¹⁾			fPLL			
	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_	
xN (Native PHY IP)	8.0	8.0 8.01 to 9.8304	Up to 13 channels above and below PLL Up to 7 channels above and below PLL	7.99	7.99	Up to 13 channels above and below PLL	3.125	3.125	Up to 13 channels above and below PLL	

Standard PCS Data Rate

Table 2-30: Standard PCS Approximate Maximum Date Rate (Gbps) for Arria V GZ Devices

The maximum data rate is also constrained by the transceiver speed grade. Refer to the "Commercial and Industrial Speed Grade Offering for Arria V GZ Devices" table for the transceiver speed grade.

Mode ⁽¹⁶⁴⁾ Transceiver Speed Grade	PMA Width	20	20	16	16	10	10	8	8	
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
FIFO —	2	C3, I3L core speed grade	9.9	9	7.84	7.2	5.3	4.7	4.24	3.76
	3	C4, I4 core speed grade	8.8	8.2	7.2	6.56	4.8	4.3	3.84	3.44


⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Active Serial Configuration Timing

Figure 2-9: AS Configuration Timing

Timing waveform for the active serial (AS) x1 mode and AS x4 mode configuration timing.

Notes:

1. If you are using AS ×4 mode, this signal represents the AS_DATA[3..0] and ERCQ sends in 4-bits of data for each DCLKcycle.

2. The initialization clock can be from internal oscillator or CLKUSR pin

3. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE ges low.

Table 2-58: AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices

The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

t_{CF2CD}, t_{CF2ST0}, t_{CFG}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in the "PS Timing Parameters for Arria V GZ Devices" table.

Term	Definition					
t _C	High-speed receiver and transmitter input and output clock period.					
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).					
t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.					
t _{FALL}	Signal high-to-low transition time (80-20%)					
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.					
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.					
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.					
t _{RISE}	Signal low-to-high transition time (20-80%)					
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_C/w)$					
V _{CM(DC)}	DC common mode input voltage.					
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.					
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.					
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.					
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.					
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.					
V _{IH(AC)}	High-level AC input voltage					
V _{IH(DC)}	High-level DC input voltage					
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.					
V _{IL(AC)}	Low-level AC input voltage					
V _{IL(DC)}	Low-level DC input voltage					

Altera Corporation

