E·XFL

Intel - 5AGXMA5D4F27C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	336
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma5d4f27c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

1-4 Recommended Operating Conditions

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.8	100	%
		3.85	68	%
		3.9	45	%
		3.95	28	%
		4	15	%
		4.05	13	%
		4.1	11	%
		4.15	9	%
Vi (AC)	AC input voltage	4.2	8	%
		4.25	7	%
		4.3	5.4	%
		4.35	3.2	%
		4.4	1.9	%
		4.45	1.1	%
		4.5	0.6	%
		4.55	0.4	%
		4.6	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

Recommended Operating Conditions

Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

I/O Standard	V _{II}	_{-(DC)} (V)	V _{IH(D}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I _{OH} ⁽¹⁴⁾ (mA)
i/O Stanuaru	Min	Мах	Min	Мах	Мах	Min	Мах	Min	(mA)	
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	$V_{CCIO} + 0.3$	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	$V_{CCIO} + 0.3$	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	$V_{CCIO} + 0.3$	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	$V_{CCIO} + 0.3$	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I	—	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	8	-8
SSTL-15 Class II	—	V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	16	-16
SSTL-135	—	V_{REF} – 0.09	$V_{REF} + 0.09$		V _{REF} – 0.16	$V_{REF} + 0.16$	$0.2 \times V_{CCIO}$	$0.8 \times V_{\rm CCIO}$		—
SSTL-125	—	$V_{REF} - 0.85$	$V_{REF} + 0.85$		V _{REF} – 0.15	$V_{REF} + 0.15$	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	—	—
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1		V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Typical TX V_{OD} Setting for Arria V Transceiver Channels with termination of 100 Ω

Table 1-32: Typical TX Vor	Setting for Arria V Transceive	r Channels with termination of 100 Ω
	, setting to suma t manseerre	

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	6 ⁽⁵⁹⁾	120	34	680
	7 ⁽⁵⁹⁾	140	35	700
	8(59)	160	36	720
	9	180	37	740
	10	200	38	760
	11	220	39	780
	12	240	40	800
	13	260	41	820
	14	280	42	840
V _{OD} differential peak-to-peak typical	15	300	43	860
-) F	16	320	44	880
	17	340	45	900
	18	360	46	920
	19	380	47	940
	20	400	48	960
	21	420	49	980
	22	440	50	1000
	23	460	51	1020
	24	480	52	1040

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

⁽⁵⁹⁾ Only valid for data rates \leq 5 Gbps.

1-40 Transceiver Compliance Specification

Quartus Prime 1st		Quartus Prime V _{OD} Setting								
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit		
16	_	_	9.56	7.73	6.49		_	dB		
17	_	_	10.43	8.39	7.02		_	dB		
18	_		11.23	9.03	7.52		_	dB		
19	_		12.18	9.7	8.02		_	dB		
20	_	_	13.17	10.34	8.59	_	_	dB		
21	_	_	14.2	11.1	_	_	_	dB		
22	_		15.38	11.87			_	dB		
23	_	_	—	12.67	—		_	dB		
24	_			13.48	_		_	dB		
25	_			14.37	—		_	dB		
26	_	_	_		_	_	_	dB		
27	_				_		_	dB		
28							_	dB		
29	_				—		_	dB		
30	_				_		_	dB		
31							—	dB		

Related Information

SPICE Models for Altera Devices

Provides the Arria V HSSI HSPICE models.

Transceiver Compliance Specification

The following table lists the physical medium attachment (PMA) specification compliance of all supported protocol for Arria V GX, GT, SX, and ST devices. For more information about the protocol parameter details and compliance specifications, contact your Altera Sales Representative.

1-46	PLL Specifications
------	--------------------

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{OUTPJ_DC} ⁽⁶⁷⁾	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—	_	17.5	mUI (p-p)
t(67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$			250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
t _{FOUTPJ_DC} ⁽⁶⁷⁾	in fractional PLL	$F_{OUT} < 100 \text{ MHz}$			25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	_		175	ps (p-p)
t _{OUTCCJ_DC} ⁽⁶⁷⁾	output in integer PLL	$F_{OUT} < 100 \text{ MHz}$	_		17.5	mUI (p-p)
+ (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
t _{FOUTCCJ_DC} ⁽⁶⁷⁾	output in fractional PLL	$F_{OUT} < 100 \text{ MHz}$	—		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
(67)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
t _{outpj_io} ⁽⁶⁷⁾⁽⁷⁰⁾	regular I/O in integer PLL	$F_{OUT} < 100 \text{ MHz}$	_	_	60	mUI (p-p)
t _{FOUTPJ_IO} ⁽⁶⁷⁾⁽⁶⁸⁾⁽⁷⁰⁾	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	$F_{OUT} < 100 \text{ MHz}$			60	mUI (p-p)
t (67)(70)	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$			600	ps (p-p)
t _{OUTCCJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾	a regular I/O in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—	_	60	mUI (p-p)
t (67)(68)(70)	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
t _{FOUTCCJ_IO} ⁽⁶⁷⁾⁽⁶⁸⁾⁽⁷⁰⁾	a regular I/O in fractional PLL	$F_{OUT} < 100 \text{ MHz}$			60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

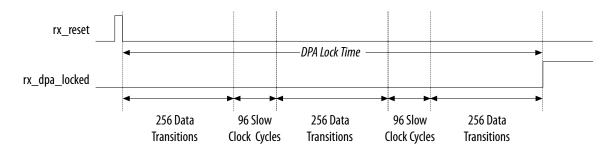
⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

DSP Block Performance Specifications

	Mode		Performance		Unit	
	Moue	–I3, –C4	-I5, -C5	-C6	Onit	
	Independent 9×9 multiplication	370	310	220	MHz	
	Independent 18×19 multiplication	370	310	220	MHz	
	Independent 18 × 25 multiplication	370	310	220	MHz	
Modes using One DSP	Independent 20×24 multiplication	370	310	220	MHz	
Block	Independent 27×27 multiplication	310	250	200	MHz	
	Two 18×19 multiplier adder mode	370	310	220	MHz	
	18×18 multiplier added summed with 36- bit input	370	310	220	MHz	
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	370	310	220	MHz	

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.


When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .

Arria V GX, GT, SX, and ST Device Datasheet

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition	
SPI-4	0000000001111111111	2	128	640	
Parallel Rapid I/O	00001111	2	128	640	
r araner Rapid 1/0	10010000	4	64	640	
Miscellaneous	10101010	8	32	640	
wiscenaneous	01010101	8	32	640	

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

FPP Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP $\times 16$ where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 1-65: DCLK-to-DATA[] Ratio for Arria V Devices

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	Off	Off	1
FPP (8-bit wide)	On	Off	1
rrr (o-on wide)	Off	On	2
	On	On	2
	Off	Off	1
FPP (16-bit wide)	On	Off	2
rrr (10-on wide)	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLKto-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria V Devices table.

Table 1-66: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)		
	A1	71,015,712	439,960		
	A3	71,015,712	439,960		
	A5	101,740,800	446,360		
Arria V GX	A7	101,740,800	446,360		
Allia V GA	B1	137,785,088	457,368		
	B3	137,785,088	457,368		
	B5	185,915,808	463,128		
	B7	185,915,808	463,128		
	C3	71,015,712	439,960		
Arria V GT	C7	101,740,800	446,360		
Allia v GI	D3	137,785,088	457,368		
	D7	185,915,808	463,128		
Arria V SX	B3	185,903,680	450,968		
Allia v SA	B5	185,903,680	450,968		
Arria V ST	D3	185,903,680	450,968		
7111a V 51	D5	185,903,680	450,968		

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

			Active Seria	 (108)	Fast Passive Parallel ⁽¹⁰⁹⁾			
Variant	Member Code	Width	DCLK (MHz)	Minimum Configura- tion Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)	
	A1	4	100	178	16	125	36	
	A3	4	100	178	16	125	36	
	A5	4	100	255	16	125	51	
Arria V GX	A7	4	100	255	16	125	51	
Allia v GA	B1	4	100	344	16	125	69	
	B3	4	100	344	16	125	69	
	B5	4	100	465	16	125	93	
	B7	4	100	465	16	125	93	
	C3	4	100	178	16	125	36	
Arria V GT	C7	4	100	255	16	125	51	
Allia v Gi	D3	4	100	344	16	125	69	
	D7	4	100	465	16	125	93	
Arria V SX	В3	4	100	465	16	125	93	
Allia V SA	B5	4	100	465	16	125	93	
Arria V ST	D3	4	100	465	16	125	93	
	D5	4	100	465	16	125	93	

Related Information Configuration Files on page 1-83

(108) DCLK frequency of 100 MHz using external CLKUSR.
 (109) Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹² Available) Settings	Available		Fast Model		Slow Model					- Unit
	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	- I 3	-15	Onit	
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

2-2 Absolute Maximum Ratings

Lower number refers to faster speed grade.

L = Low power devices.

Transceiver Speed Grade	Core Speed Grade						
Transceiver Speeu Graue	C3	C4	I3L	14			
2	Yes	_	Yes	-			
3		Yes		Yes			

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V GZ devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions other than those listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2-2: Absolute Maximum Ratings for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
		0.82	0.85	0.88		
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V	
		$\begin{array}{ c c c c c } & 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 0.82 & 0.85 & 0.88 \\ \hline 0.97 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 1.04 & 1.03 \\ \hline 1.05 & 1.07 \\ \hline 1.05 & 1.07 \\ \hline 1.05 & 1.07 \\ \hline 1.07 & 1.0 & 1.03 \\ \hline 1.03 & 1.05 & 1.07 \\ \hline 1.04 & 1.05 & 1.07 \\ \hline 1.05 &$				
		0.82	0.85	0.88		
V _{CCR_GXBR} ⁽¹²¹⁾	Receiver analog power supply (right side)	0.97	1.0	1.03	V	
		nalog power supply (left side) 0.97 1.0 1.03 V 1.03 1.05 1.07 1.03 V 1.03 0.82 0.85 0.88 V 1.03 0.97 1.0 1.03 V 1.03 1.05 1.07 V 1.03 0.97 1.0 1.03 V 1.03 1.05 1.07 V 1.03 0.85 0.88 V 1.03 0.97 1.0 1.03 V 1.03 0.97 1.0 1.03 V 1.03 1.05 1.07 V 1.04 1.425 1.5 1.575 V				
		0.82	0.85	0.88		
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03	V	
		er supply (left side) 0.82 0.85 0.88 0.97 1.0 1.03 1.03 1.05 1.07 $rer supply (right side)$ 0.82 0.85 0.88 0.97 1.0 1.03 1.03 1.05 1.07 0.82 0.85 0.88 0.97 1.0 1.03 1.03 1.05 1.07 0.82 0.85 0.88 0.97 1.0 1.03 <tr< td=""><td>1.07</td><td></td></tr<>	1.07			
		0.82	0.85	0.88		
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	$\begin{array}{ c c c c c c } \hline 0.85 & 0.88 & & \\ \hline 1.0 & 1.03 & V \\ \hline 1.05 & 1.07 & & \\ \hline 0.85 & 0.88 & & \\ \hline 1.0 & 1.03 & V \\ \hline 1.05 & 1.07 & & \\ \hline 0.85 & 0.88 & & \\ \hline 1.0 & 1.03 & V \\ \hline 1.05 & 1.07 & & \\ \hline 0.85 & 0.88 & & \\ \hline 1.0 & 1.03 & V \\ \hline 1.05 & 1.07 & & \\ \hline 5 & 1.5 & 1.575 & V \\ \hline \end{array}$			
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V	

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах		
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	$0.49 \times V_{ m CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{ m CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$		
SSTL-12 Class I, II	1.14	1.20	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$		
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_		
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_		
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.53 \times V_{ m CCIO}$	_	V _{CCIO} /2	_		
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	0.51 × V _{CCIO}	_	—	_		

Table 2-18: Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria V GZ Devices

I/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	l _{ol} (mA)	l _{oh} (mA)
	Min	Max	Min	Max	Мах	Min	Max	Min	י _{סן} (וויה)	י _{oh} (יוידע)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} - 0.603	V _{TT} + 0.603	6.7	-6.7

AV-51002 2017.02.10

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$		_	1.8	_	_	1.8	V
	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$	_	_	2.4	_	_	2.4	V
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾			_		85	_		mV
Differential on-chip termination resistors	85– Ω setting	_	85 ± 30%	_	_	85 ± 30%	_	Ω
	100– Ω setting	_	100 ± 30%		_	100 ± 30%		Ω
	120– Ω setting	—	120 ± 30%		—	120 ± 30%		Ω
	150– Ω setting	_	150 ± 30%	_	_	150 ± 30%	_	Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			- Unit
Symbol/Description		Min	Тур	Мах	Min	Тур	Мах	
V _{ICM} (AC and DC coupled)	$V_{CCR_GXB} = 0.85 V$ full bandwidth	_	600	_	_	600	_	mV
	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth		600	_		600	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth	_	700	_	_	700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth	_	700		_	700		mV
t _{LTR} ⁽¹⁴⁹⁾	_			10	—	_	10	μs
t _{LTD} ⁽¹⁵⁰⁾	_	4	_		4	_		μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	_		4	_		μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	_	15			15	_		μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16		_	16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.


⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 2-7: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Timing waveform for FPP configuration when using a MAX[®] II or MAX V device as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. For FPP ×16, use DATA[15..0]. For FPP ×8, use DATA[7..0]. DATA[31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high when the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Arria V GZ Device Datasheet

2-70 Remote System Upgrades Circuitry Timing Specification

Table 2-62: Uncompressed .rbf Sizes for Arria V GZ Devices

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (223)	
Arria V GZ	E1	137,598,880	562,208	
	E3	137,598,880	562,208	
	E5	213,798,880	561,760	
	E7	213,798,880	561,760	

Table 2-63: Minimum Configuration Time Estimation for Arria V GZ Devices

Variant Membe			Active Serial ⁽²²⁴⁾		Fast Passive Parallel ⁽²²⁵⁾			
	Member Code	Width	DCLK (MHz)	Min Config Time (ms)	Width	DCLK (MHz)	Min Config Time (ms)	
	E1	4	100	344	32	100	43	
Arria V GZ	E3	4	100	344	32	100	43	
	E5	4	100	534	32	100	67	
	E7	4	100	534	32	100	67	

Remote System Upgrades Circuitry Timing Specification

Table 2-64: Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit	
t _{RU_nCONFIG} ⁽²²⁶⁾	250	—	ns	
t _{RU_nRSTIMER} ⁽²²⁷⁾	250	_	ns	

⁽²²³⁾ The IOCSR **.rbf** size is specifically for the Configuration via Protocol (CvP) feature.

⁽²²⁴⁾ DCLK frequency of 100 MHz using external CLKUSR.

(225) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

