E·XFL

Intel - 5AGXMA5G4F31C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma5g4f31c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1-4 Recommended Operating Conditions

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.8	100	%
		3.85	68	%
		3.9	45	%
		3.95	28	%
		4	15	%
		4.05	13	%
		4.1	11	%
Vi (AC)		4.15	9	%
	AC input voltage	4.2	8	%
		4.25	7	%
		4.3	5.4	%
		4.35	3.2	%
		4.4	1.9	%
		4.45	1.1	%
		4.5	0.6	%
		4.55	0.4	%
		4.6	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

Recommended Operating Conditions

Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V)			
i/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	—	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_			

Tuble 1 15, Single Ended SSTE, 15TE, and 15OE / O hererence voltage Specifications for Anna v Devices

I/O Standard		$V_{CCIO}(V)$)		V _{ID} (mV) ⁽¹⁶⁾			$V_{ICM(DC)}(V)$ $V_{OD}(V)^{(17)}$			١	V _{OCM} (V) ⁽¹⁷⁾⁽¹⁸⁾			
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Transceiver Specifications for Arria V GX and SX Devices and Transceiver Specifications for Arria V GT and ST Devices tables.														
2.5 V	2 375	2.5	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1 125	1 25	1 375
LVDS ⁽¹⁹⁾	2.375	2.575 2.5 2.025	1.25 V	1.25 V	_	1.05	D _{MAX} > 1.25 Gbps	1.55	0.217		0.0	1.123	1.2.5	1.373	
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4
LVPECL ⁽²²⁾	200	300			0.60	D _{MAX} ≤ 700 Mbps	1.80								
				500			1.00	D _{MAX} > 700 Mbps	1.60						

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onit	
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz	
Transceiver Reconfigura- tion Controller IP (mgmt_ clk_clk) clock frequency	_	75	_	125	75	_	125	MHz	

Table 1-22: Receiver Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			llnit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards		1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS						
Data rate ⁽²⁸⁾		611	—	6553.6	611	—	3125	Mbps
Absolute V_{MAX} for a receiver pin ⁽²⁹⁾	_		_	1.2		—	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_		-0.4	—	—	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_		1.6		_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2		_	2.2	V

 ⁽²⁸⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
 ⁽²⁹⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Transceiver Specifications for Arria V GT and ST Devices

Table 1-26: Reference Clock Specifications	for Arria V GT and ST Devices
--	-------------------------------

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Мах	Onic
Supported I/O standards	1.2 V PCML, 1.4 VPCML,	1.5 V PCML, 2.5	, HCSL, and LVDS		
Input frequency from REFCLK input pins	_	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽⁴¹⁾			400	ps
Fall time	Measure at ±60 mV of differential signal ⁽⁴¹⁾				ps
Duty cycle	_	45		55	%
Peak-to-peak differential input voltage	—	200		300 ⁽⁴²⁾ /2000	mV
Spread-spectrum modulating clock frequency	PCI Express (PCIe)	30		33	kHz
Spread-spectrum downspread	PCIe		0 to -0.5%		_
On-chip termination resistors	—		100		Ω
V _{ICM} (AC coupled)	—	—	1.2		V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250		550	mV

⁽⁴⁰⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (41)

⁽⁴²⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st		Quartus Prime V _{OD} Setting										
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit				
0	0	0	0	0	0	0	0	dB				
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB				
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB				
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB				
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB				
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB				
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB				
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB				
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB				
9	_	7.92	4.86	4	3.38	2.87	2.46	dB				
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB				
11	_	10.2	6.09	5.01	4.23	3.61	_	dB				
12	_	11.56	6.74	5.51	4.68	3.97	_	dB				
13	_	12.9	7.44	6.1	5.12	4.36	_	dB				
14	_	14.44	8.12	6.64	5.57	4.76	_	dB				
15	_	_	8.87	7.21	6.06	5.14	_	dB				

Arria V GX, GT, SX, and ST Device Datasheet

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Momory	Mada	Resourc	es Used		Unit		
Memory	Mode	ALUTs	Memory	-I3, -C4	-I5, -C5	-C6	ont
	Single port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	_		500	450	400	MHz
M10K Block	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

Arria V GX, GT, SX, and ST Device Datasheet

Sumbol/Description	Conditions	Transceiver Speed Grade 2			Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onit
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	—	600		_	600	_	mV
Varia (AC and DC coupled)	$V_{CCR_GXB} = 0.85 V$ half bandwidth	—	600		_	600	_	mV
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth	—	700		—	700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth	—	700		_	700	_	mV
t _{LTR} ⁽¹⁴⁹⁾	—		—	10	—	—	10	μs
t _{LTD} ⁽¹⁵⁰⁾	—	4	—		4	_	_	μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	—	_	4	—	—	μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	—	15	—		15	_	_	μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)		_	16			16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	Onit
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} ⁽¹⁵³⁾	—	1			1	_		μs
t _{pll_lock} ⁽¹⁵⁴⁾	_			10			10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width. (153)

⁽¹⁵⁴⁾ $t_{\text{pll} \text{ lock}}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Max	Unit
t (171) (172)	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	—	0.15	UI (p-p)
'INCCJ',	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
tourny p.c. ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
COUTPJ_DC	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	_		17.5	mUI (p-p)
(173)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
FOUTPJ_DC	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	_		$25^{(176)},$ 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
t	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
toutccj_dc ^(1/3)	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL (f _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
t _{foutccj_dc} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			$25^{(176)}, \\ 17.5^{(174)}$	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

Symbol	Parameter	Min	Тур	Мах	Unit
t (173) (175)	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTPJ_IO	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		60	mUI (p-p)
t (173) (175) (176)	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
·FOUTPJ_IO , ,	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
. (173) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_		60	mUI (p-p)
t (173) (175) (176)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
"FOUTCCJ_IO",	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC} ⁽¹⁷³⁾ , ⁽¹⁷⁷⁾	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)			17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Sumbol	Conditions		C3, I3L		C4, I4			Unit	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
	SERDES factor J = 3 to 10 (182), (183)	(184)	_	1250	(184)	_	1050	Mbps	
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)	_	1250	Mbps	
	SERDES factor J = 2, uses DDR Registers	(184)	—	(189)	(184)	_	(189)	Mbps	
	SERDES factor J = 1, uses SDR Register	(184)	—	(189)	(184)		(189)	Mbps	
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 ⁽¹⁹¹⁾	(184)		840	(184)		840	Mbps	

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Non DPA Mode High-Speed I/O Specifications

Table 2-46: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions		C3, I3I			C4, I4		Unit
	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Sampling Window	—	_		300	_		300	ps

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$	—	_
		DCLK period		
t _{CD2UM} C	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (209)		_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57 ٠
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Arria V GZ Device Datasheet

⁽²⁰⁸⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽²⁰⁹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Table 2-57: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (210)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 (211)	μs
t _{CF2CK} ⁽²¹²⁾	nCONFIG high to first rising edge on DCLK	1,506		μs
t _{ST2CK} ⁽²¹²⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽²¹³⁾	_	S
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}		S
£	DCLK frequency (FPP ×8/×16)	-	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁴⁾	175	437	μs

⁽²¹⁰⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹¹⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{(212)}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

 $^{(213)}$ N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.

⁽²¹⁴⁾ The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

Arria V GZ Device Datasheet

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	—	μs
t _{ST2CK} (219)	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$	—	s
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (221)	—	

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

Related Information

Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Initialization

Table 2-61: Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices

Initialization Clock Source	Configuration Schemes	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, FPP	12.5	
GI KILOD (222)	PS, FPP	125	9576
CLKUSR (222)	AS	100	8370
DCLK	PS, FPP	125	

Configuration Files

Use the following table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size.

Arria V GZ Device Datasheet

⁽²²¹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²²⁾ To enable CLKUSR as the initialization clock source, turn on the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software from the General panel of the Device and Pin Options dialog box.

Date	Version	Changes
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53.
February 2014	3.7	Updated Table 28.
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications".
August 2013	3.5	Updated Table 28.
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28.
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9.
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage".
December 2012	3.0	Initial release.

