

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	8962
Number of Logic Elements/Cells	190000
Total RAM Bits	13284352
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma5g4f31i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Symbol/Description	Condition	Т	Unit		
Symbol/Description	Condition	Min	Тур	Мах	Onit
$t_{LTD_manual}^{(51)}$		4	_	_	μs
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	_	—	μs
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100	ppm		
Run length	_				UI
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gai and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response a Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.			

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Sumbol/Description	Condition	Tran	Unit			
Symbol Description	Condition	Min	Тур	Max	onit	
Supported I/O standards	1.5 V PCML					
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps	
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps	
V _{OCM} (AC coupled)	_		650		mV	
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV	

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Protocol	Sub-protocol	Data Rate (Mbps)
	SONET 155	155.52
SONET	SONET 622	622.08
	SONET 2488	2,488.32
	GPON 155	155.52
Gigabit-canable passive optical network (GPON)	GPON 622	622.08
Gigable-capable passive optical network (GI OIV)	GPON 1244	1,244.16
	GPON 2488	2,488.32
QSGMII	QSGMII 5000	5,000

Core Performance Specifications

Clock Tree Specifications

Table 1-35: Clock Tree Specifications for Arria V Devices

Paramotor		Unit		
Falameter	-I3, -C4	–I5, –C5	-C6	omt
Global clock and Regional clock	625	625	525	MHz
Peripheral clock	450	400	350	MHz

PLL Specifications

Table 1-36: PLL Specifications for Arria V Devices

This table lists the Arria V PLL block specifications. Arria V PLL block does not include HPS PLL.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
^L FOUTPJ_DC	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
toutccj_dc ⁽⁰⁾	output in integer PLL	F _{OUT} < 100 MHz	_		17.5	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock output in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
FOUTCCJ_DC		F _{OUT} < 100 MHz	—	_	25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)(70)	Period jitter for clock output on a regular I/O in integer PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
OUTPJ_IO		F _{OUT} < 100 MHz	_		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTCCJ_IO	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t a	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$			175	ps (p-p)
CASC_OUTPJ_DC	in cascaded PLLs	F _{OUT} < 100 MHz			17.5	mUI (p-p)
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_			±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	_	8	24	32	bits
k _{VALUE}	Numerator of fraction	_	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency	$f_{INPFD} = 100 \text{ MHz}$	390625	5.96	0.023	Hz

Related Information

Memory Output Clock Jitter Specifications on page 1-57

Provides more information about the external memory interface clock output jitter specifications.

- Upstream PLL: 0.59 MHz ≤ Upstream PLL BW < 1 MHz
- Downstream PLL: Downstream PLL BW > 2 MHz

⁽⁷¹⁾ The cascaded PLL specification is only applicable with the following conditions:

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Momory	Mada	Resources Used		Performance			Unit
Wentory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	Ont
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	_		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

Figure 1-18: NAND Address Latch Timing Diagram

Figure 1-20: NAND Data Read Timing Diagram

ARM Trace Timing Characteristics

Table 1-61: ARM Trace Timing Requirements for Arria V Devices

Most debugging tools have a mechanism to adjust the capture point of trace data.

Description	Min	Мах	Unit
CLK clock period	12.5	_	ns
CLK maximum duty cycle	45	55	%
CLK to D0 –D7 output data delay	-1	1	ns

UART Interface

The maximum UART baud rate is 6.25 megasymbols per second.

GPIO Interface

The minimum detectable general-purpose I/O (GPIO) pulse width is 2 µs. The pulse width is based on a debounce clock frequency of 1 MHz.

Date	Version	Changes
August 2013	3.5	Removed "Pending silicon characterization" note in Table 29.Updated Table 25.
August 2013	3.4	 Removed Preliminary tags for Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 9, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30, Table 31, Table 35, Table 36, Table 51, Table 53, Table 54, Table 55, Table 56, Table 57, Table 60, Table 62, and Table 64. Updated Table 1, Table 3, Table 11, Table 19, Table 20, Table 21, Table 22, Table 29.
June 2013	3.3	Updated Table 20, Table 21, Table 25, and Table 38.
May 2013	3.2	 Added Table 37. Updated Figure 8, Figure 9, Figure 20, Figure 22, and Figure 23. Updated Table 1, Table 5, Table 10, Table 13, Table 19, Table 20, Table 21, Table 23, Table 29, Table 39, Table 40, Table 46, Table 56, Table 57, Table 60, and Table 64. Updated industrial junction temperature range for -I3 speed grade in "PLL Specifications" section.
March 2013	3.1	 Added HPS reset information in the "HPS Specifications" section. Added Table 60. Updated Table 1, Table 3, Table 17, Table 20, Table 29, and Table 59. Updated Figure 21.

Transceiver Power Supply Requirements

Table 2-7: Transceiver Power Supply Voltage Requirements for Arria V GZ Devices

Conditions	VCCR_GXB and VCCT_GXB ⁽¹²²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	1.05			
• Data rate > 10.3 Gbps.				
• DFE is used.				
If ANY of the following conditions are true ⁽¹²³⁾ :	1.0	3.0		
 ATX PLL is used. Data rate > 6.5Gbps. DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used. 			1.5	V
If ALL of the following conditions are true:	0.85	2.5		
 ATX PLL is not used. Data rate ≤ 6.5Gbps. DFE, AEQ, and EyeQ are not used. 				

DC Characteristics

Supply Current

Standby current is the current drawn from the respective power rails used for power budgeting.

Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

⁽¹²²⁾ If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to 0.85 V, they can be shared with the VCC core supply.

⁽¹²³⁾ Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_I = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	_	30	μΑ

Hot Socketing

Table 2-14: Hot Socketing Specifications for Arria V GZ Devices

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 µA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA ⁽¹²⁴⁾
I _{XCVR-TX (DC)}	DC current per transceiver transmitter pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver pin	50 mA

Internal Weak Pull-Up Resistor

Table 2-15: Internal Weak Pull-Up Resistor for Arria V GZ Devices

All I/O pins have an option to enable the weak pull-up resistor except the configuration, test, and JTAG pins. The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

Symbol	Description	V _{CCIO} Conditions (V) ⁽¹²⁵⁾	Value ⁽¹²⁶⁾	Unit
		3.0 ±5%	25	kΩ
	SymbolDescription $V_{CCIO} Conditions (V)$ (125)Value (126)Unit R_{PU} $3.0 \pm 5\%$ 25 $k \Omega$ R_{PU} Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option. $3.0 \pm 5\%$ 25 $k \Omega$ $1.5 \pm 5\%$ 25 $k \Omega$ $1.25 \pm 5\%$ 25 $k \Omega$ $1.25 \pm 5\%$ 25 $k \Omega$ $1.2 \pm 5\%$ 25 $k \Omega$	kΩ		
SymbolDescription V_{CCIO} Conditions (V) (42)R PUValue of the I/O pin pull-up resistor before and during configuration, as well as user mode if you enable the programmable pull-up resistor option. $3.0 \pm 5\%$ $1.5 \pm 5\%$ $1.5 \pm 5\%$ $1.25 \pm 5\%$ $1.25 \pm 5\%$	25	kΩ		
	1.5 ±5%	25	kΩ	
	programmable pull-up resistor option.	1.35 ±5%	25	kΩ
		1.25 ±5%	25	kΩ
		1.2 ±5%	25	kΩ

⁽¹²⁴⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(125)}}$ The pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

 $^{^{(126)}}$ These specifications are valid with a ±10% tolerance to cover changes over PVT.

AV-51002 2017.02.10

	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	Ι (ma Δ)	I (m A)
i/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	i _{ol} (mA)	I _{oh} (MA)
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I	—	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	16	-16
SSTL-135 Class I, II	_	V _{REF} – 0.09	V _{REF} + 0.09	—	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	-
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	_	_
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	_
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.2	V _{REF} + 0.2	0.4	$V_{\rm CCIO}$ – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.2	V _{REF} + 0.2	0.4	$V_{\rm CCIO}$ – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{ m CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{ m CCIO}$	$0.75 \times V_{ m CCIO}$	16	-16
HSUL-12	—	V _{REF} – 0.13	V _{REF} + 0.13	_	V _{REF} - 0.22	V_{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Arria V GZ Device Datasheet

Altera Corporation

|--|

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transce	eiver Speed	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit	
Rise time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	nc	
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	—		400			400	ps	
Duty cycle	_	45		55	45	—	55	%	
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30		33	30	_	33	kHz	
Spread-spectrum downspread	PCIe		0 to	_		0 to		%	
			-0.5			-0.5			
On-chip termination resistors	—	_	100	_		100		Ω	
Absolute V _{MAX}	Dedicated reference clock pin	—		1.6			1.6	V	
	RX reference clock pin	_		1.2			1.2		
Absolute V _{MIN}	—	-0.4	_	_	-0.4	—	_	V	
Peak-to-peak differential input voltage	—	200		1600	200	_	1600	mV	
V _{ICM} (AC coupled)	Dedicated reference clock pin	100	00/900/850	(139)	1000/900/850 (139)			mV	
	RX reference clock pin	1.0/0.9/0.85 (140)			1.	0/0.9/0.85(1	mV		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	mV	

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.									
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)					
	0 (166)	0	32	640					
	1(166)	20	33	660					
	2(166)	40	34	680					
	3(166)	60	35	700					
	4 ⁽¹⁶⁶⁾	80	36	720					
	5 ⁽¹⁶⁶⁾	100	37	740					
	6	120	38	760					
V_{OD} differential peak to peak typical	7	140	39	780					
	8	160	40	800					
	9	180	41	820					
	10	200	42	840					
	11	220	43	860					
	12	240	44	880					
	13	260	45	900					
	14	280	46	920					

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

2-50 Soft CDR Mode High-Speed I/O Specifications

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽²⁰¹⁾	Maximum
Darallel Papid I/O	00001111	2	128	640 data transitions
Parallel Rapid I/O	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
Miscenaneous	01010101	8	32	640 data transitions

Soft CDR Mode High-Speed I/O Specifications

Table 2-44: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L			C4, I4			Unit
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
Soft-CDR ppm tolerance	—	_	_	300	_	_	300	± ppm

⁽²⁰¹⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R_S/R_T calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	-	4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5		ns
t _H	Data hold time after falling edge on DCLK	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁶⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × clkusr period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Date	Version	Changes
June 2016	2016.06.20	 Changed column heading from "Value" to "Maximum" in the "Pin Capacitance for Arria V GZ Devices" table. Changed the minimum supported data rate range values from "1000" to "2000" in the "ATX PLL Specifications for Arria V GZ Devices" table. Added the supported data rates for the following output standards using true LVDS output buffer types in the "High-Speed Clock Specifications for Arria V GZ Devices" table: True RSDS output standard: data rates of up to 230 Mbps True mini-LVDS output standard: data rates of up to 340 Mbps
December 2015	2015.12.16	 Removed the CDR ppm tolerance specification from the "Receiver Specifications for Arria V GZ Devices" table. Removed transmitter rise and fall time specifications from the "Transmitter Specifications for Arria V GZ Devices" table. Changed the .rbf sizes in the "Uncompressed .rbf Sizes for Arria V GZ Devices" table. Added a footnote to the "Transmitter High-Speed I/O Specifications for Arria V GZ Devices" table.
June 2015	2015.06.16	 Changed the conditions for the reference clock rise and fall time and added a note to the condition in the "Reference Clock Specifications for Arria V GZ Devices" table. Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Receiver Specifications for Arria V GZ Devices" table.
January 2015	2015.01.30	 Added 240-Ω to the "OCT Calibration Accuracy Specifications for Arria V GZ Devices" table. Changed the CDR PPM tolerance spec in the "Receiver Specifications for Arria V GZ Devices" table. Added additional max data rate for fPLL in the "Fractional PLL Specifications for Arria V GZ Devices" table.

