

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.12V ~ 1.18V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma7g4f31i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Pin Leakage Current

Table 1-6: I/O Pin Leakage Current for Arria V Devices

Symbol	Description	Condition	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ

Bus Hold Specifications

Table 1-7: Bus Hold Parameters for Arria V Devices

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

				V _{CCIO} (V)											
Parameter	Symbol	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3.	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max)	8		12		30		50		70		70	_	μΑ
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min)	-8		-12		-30		-50		-70		-70	_	μΑ
Bus-hold, low, overdrive current	I _{ODL}	$\begin{array}{c} 0 \ V < V_{IN} \\ < V_{CCIO} \end{array}$	_	125		175	_	200		300	_	500		500	μΑ
Bus-hold, high, overdrive current	I _{ODH}	0 V <v<sub>IN <v<sub>CCIO</v<sub></v<sub>	_	-125		-175		-200	_	-300		-500		-500	μΑ

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Мах	Unit	
Interface speed (PMA direct mode)	50	153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾	MHz	
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36

⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected.

⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st			Quar	tus Prime V _{OD} Se	etting			
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	_	10.2	6.09	5.01	4.23	3.61	—	dB
12	_	11.56	6.74	5.51	4.68	3.97	—	dB
13	_	12.9	7.44	6.1	5.12	4.36	—	dB
14	_	14.44	8.12	6.64	5.57	4.76	_	dB
15	_	_	8.87	7.21	6.06	5.14	—	dB

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-40 Transceiver Compliance Specification

Quartus Prime 1st			Quar	tus Prime V _{OD} Se	etting			
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
16	_	_	9.56	7.73	6.49		_	dB
17	_	_	10.43	8.39	7.02		_	dB
18	_		11.23	9.03	7.52		_	dB
19	_		12.18	9.7	8.02		_	dB
20	_	_	13.17	10.34	8.59	_	_	dB
21	_	_	14.2	11.1	—	_	_	dB
22	_		15.38	11.87			_	dB
23	_	_	—	12.67	—		_	dB
24	_			13.48	_		_	dB
25	_			14.37	—		_	dB
26	_	_	_	_	_	_	_	dB
27	_				_		_	dB
28							_	dB
29	_				—		_	dB
30	_				_		_	dB
31							—	dB

Related Information

SPICE Models for Altera Devices

Provides the Arria V HSSI HSPICE models.

Transceiver Compliance Specification

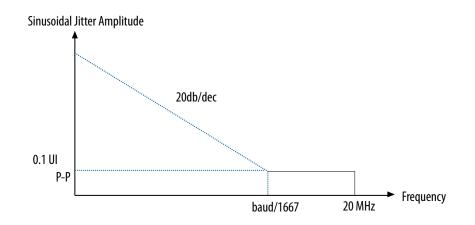

The following table lists the physical medium attachment (PMA) specification compliance of all supported protocol for Arria V GX, GT, SX, and ST devices. For more information about the protocol parameter details and compliance specifications, contact your Altera Sales Representative.

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial RapidIO [®] (SRIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250

DLL Frequency Range Specifications

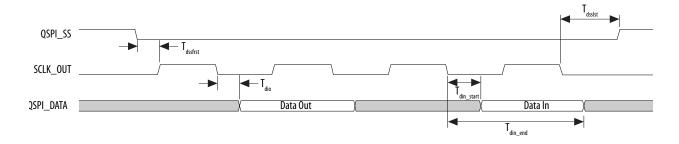
Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.


Number of DQS Delay Buffer	-I3, -C4	–I5, –C5	-C6	Unit
2	40	80	80	ps

Symbol	Description	Min	Тур	Max	Unit
T _{din_end}	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$		_	ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

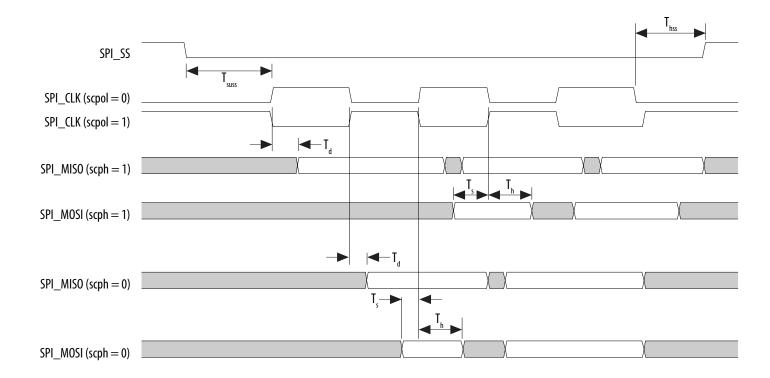
Related Information

Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

Table 1-52: SPI Master Timing Requirements for Arria V Devices


The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	_	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)	_	ns

 $^{^{(85)}}$ R_{delay} is set by programming the register <code>qspiregs.rddatacap</code>. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

Figure 1-10: SPI Slave Timing Diagram

Related Information

SPI Controller, Arria V Hard Processor System Technical Reference Manual

Provides more information about rx_sample_delay.

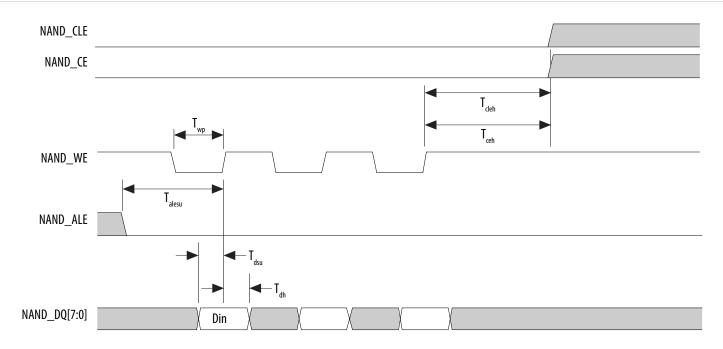

SD/MMC Timing Characteristics

Table 1-54: Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC_CLK_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC_CLK and the CSEL setting. The value of SDMMC_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.

Figure 1-19: NAND Data Write Timing Diagram

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum Maximum		Unit	
Standard	100	300	ms	

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- **PowerPlay Power Analysis** ٠ For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design-the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 µA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ

2-28	Transmitter
------	-------------

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
	85- Ω setting	_	85 ± 20%	_		85 ± 20%	_	Ω
Differential on-chip termination	100-Ω setting	—	100 ± 20%	_		100 ± 20%		Ω
resistors	120-Ω setting	_	120 ± 20%	_		120 ± 20%		Ω
	150-Ω setting	_	150 ± 20%	_		150 ± 20%		Ω
V _{OCM} (AC coupled)	0.65-V setting	_	650			650		mV
V _{OCM} (DC coupled)	_		650			650		mV
Intra-differential pair skew	Tx V _{CM} = 0.5 V and slew rate of 15 ps	_	_	15	_	_	15	ps
Intra-transceiver block transmitter x6 PMA bonded mode channel-to-channel skew		—		120		_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	xN PMA bonded mode	—	—	500	_	_	500	ps

Related Information

Arria V Device Overview

For more information about device ordering codes.

2-42 Memory Block Specifications

Mode	Performar	nce		Unit	
imoue	C3, I3L	C4	14		
One sum of two 27×27	380	300	290	MHz	
One sum of two 36×18	380	300		MHz	
One complex 18 × 18	400	350		MHz	
One 36 × 36	380	300		MHz	
Modes using Three DSP Blocks		•			
One complex 18 × 25	340	275 265		MHz	
Modes using Four DSP Blocks					
One complex 27×27	350	310		MHz	

Memory Block Specifications

Table 2-36: Memory Block Performance Specifications for Arria V GZ Devices

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

Memory	Mode	Resources Used			Unit			
		ALUTs	Memory	C3	C4	I3L	14	Omit
MLAB Simple dual-port, x32/x64 Simple dual-port, x16 dep	Single port, all supported widths	0	1	400	315	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	400	315	400	315	MHz
	Simple dual-port, x16 depth (178)	0	1	533	400	533	400	MHz
	ROM, all supported widths	0	1	500	450	500	450	MHz

⁽¹⁷⁸⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

AV-51002 2017.02.10

Symbol	Conditions	C3, I3L				Unit		
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
t _{x Jitter} - True Differential I/O	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_		160	ps
Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_		0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	—	_	300	_		325	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_		0.25	UI
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	%
	True Differential I/O Standards		_	200			200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_	_	250	_	_	300	ps
	True Differential I/O Standards		_	150		_	150	ps
TCCS	Emulated Differential I/O Standards	_	—	300			300	ps

Receiver High-Speed I/O Specifications

Table 2-41: Receiver High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit	
4	120	128	ps	

Memory Output Clock Jitter Specifications

Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

Clock Notwork	Parameter	Symbol	С3,	I3L	C4	Unit	
CIOCK NELWOIK	ralameter	Symbol	Min	Мах	Min	Мах	
	Clock period jitter	t _{JIT(per)}	-55	55	-55	55	ps
Regional	Cycle-to-cycle period jitter	t _{JIT(cc)}	-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
	Clock period jitter	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
Global	Cycle-to-cycle period jitter	t _{JIT(cc)}	-165	165	-165	165	ps
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-90	90	-90	90	ps		
	Clock period jitter	t _{JIT(per)}	-30	30	-35	35	ps
PHY Clock	Cycle-to-cycle period jitter	t _{JIT(cc)}	-60	60	-70	70	ps
	Duty cycle jitter	t _{JIT(duty)}	-45	45	-56	56	ps

Note: When you enable the decompression or design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8, FPP ×16, and FPP ×32. For the respective DCLK-to-DATA[] ratio, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.

Table 2-56: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1

Use these timing parameters when the decompression and design security features are disabled.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (205)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high		1,506 (206)	μs
t _{CF2CK} (207)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} (20	hstatus high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	—	s
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	s
t _{CLK}	DCLK period	1/f _{MAX}	—	s
f	DCLK frequency (FPP ×8/×16)		125	MHz
f_{MAX}	DCLK frequency (FPP ×32)	—	100	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²⁰⁸⁾	175	437	μs

⁽²⁰⁵⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²⁰⁶⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²⁰⁷⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$	—	—
		DCLK period		
t _{CD2UM} C	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (209)	_	_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57 ٠
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Arria V GZ Device Datasheet

Altera Corporation

⁽²⁰⁸⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽²⁰⁹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} ⁽²¹⁹⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		s
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}		s
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period		
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽²²¹⁾	_	

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.