

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	384
Number of Gates	
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma7g4f31i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit	
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V	
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v	
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.00/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V	
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.08/1.12	1.1/1.13	1.14/1.10	v	
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1.17	1.20	1.23	V	
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17 tht		1.20		
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V	
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)				v	
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1.17	1.20	1.23	V	
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)		1.20		v	
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.425	1.300	1.373	v	

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol	Description	Maximum	Unit
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50	mA

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
R _{PU}	configuration, as well as user mode if you have enabled the programmable pull-up resistor option.	$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
Кру		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

⁽¹⁰⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹²⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

Sumbol/Decovintion	Condition	Transceiver Speed Grade 4			Transc	eiver Speed G	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Minimum differential eye opening at the receiver serial input pins ⁽³⁰⁾	_	100	_	_	100	_	_	mV
V _{ICM} (AC coupled)	_	_	0.7/0.75/ 0.8 ⁽³¹⁾	_	_	0.7/0.75/ 0.8 ⁽³¹⁾		mV
V _{ICM} (DC coupled)	$\leq 3.2 \text{Gbps}^{(32)}$	670	700	730	670	700	730	mV
	85- Ω setting		85	—	_	85	_	Ω
Differential on-chip	100- Ω setting		100	_		100		Ω
termination resistors	120-Ω setting		120	—		120		Ω
	150-Ω setting		150	_		150		Ω
t _{LTR} ⁽³³⁾		_	_	10	_	_	10	μs
$t_{LTD}^{(34)}$	_	4	_	_	4	_	_	μs
t _{LTD_manual} ⁽³⁵⁾	_	4	_	—	4	_	_	μs
t _{LTR_LTD_manual} ⁽³⁶⁾		15	_		15			μs
Programmable ppm detector ⁽³⁷⁾	_	±62.5, 100, 125, 200, 250, 300, 500, and 1000					ppm	

⁽³⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(31) The AC coupled $V_{ICM} = 700 \text{ mV}$ for Arria V GX and SX in PCIe mode only. The AC coupled $V_{ICM} = 750 \text{ mV}$ for Arria V GT and ST in PCIe mode only.

⁽³²⁾ For standard protocol compliance, use AC coupling.

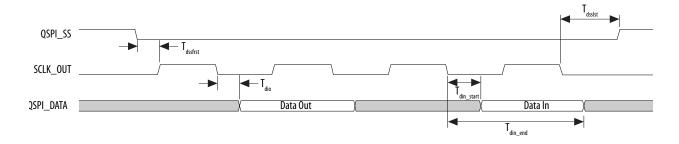
 $^{(33)}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{(34)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

 $^{(35)}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
OBSAI	OBSAI 1536	1,536
OBSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970



⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

Symbol	Description	Min	Тур	Max	Unit
T _{din_end}	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$		_	ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

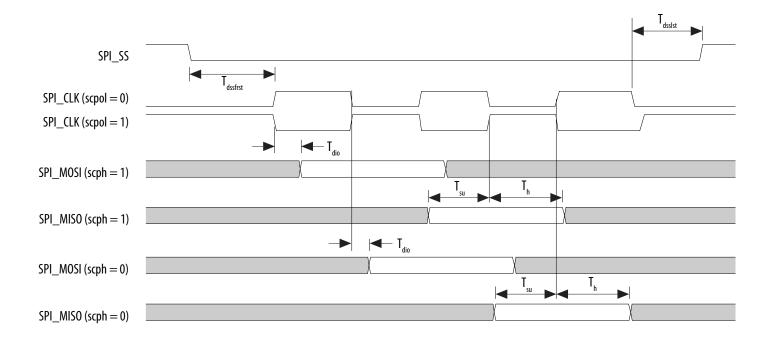
Related Information

Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

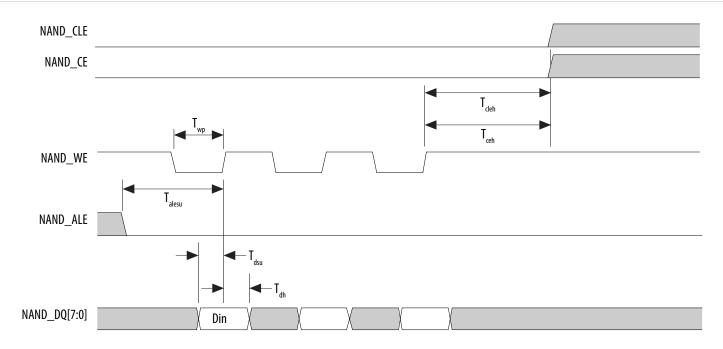
Table 1-52: SPI Master Timing Requirements for Arria V Devices


The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	_	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)	_	ns

 $^{^{(85)}}$ R_{delay} is set by programming the register <code>qspiregs.rddatacap</code>. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

Figure 1-9: SPI Master Timing Diagram


Table 1-53: SPI Slave Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	20		ns
T _s	MOSI Setup time	5		ns
T _h	MOSI Hold time	5		ns
T _{suss}	Setup time SPI_SS valid before first clock edge	8		ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8		ns
T _d	MISO output delay		6	ns

Figure 1-19: NAND Data Write Timing Diagram

			Active Seria	 (108)	Fast Passive Parallel ⁽¹⁰⁹⁾			
Variant	Member Code	Width	DCLK (MHz)	Minimum Configura- tion Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)	
	A1	4	100	178	16	125	36	
	A3	4	100	178	16	125	36	
	A5	4	100	255	16	125	51	
Arria V GX	A7	4	100	255	16	125	51	
Allia v GA	B1	4	100	344	16	125	69	
	B3	4	100	344	16	125	69	
	B5	4	100	465	16	125	93	
	B7	4	100	465	16	125	93	
	C3	4	100	178	16	125	36	
Arria V GT	C7	4	100	255	16	125	51	
Allia v Gi	D3	4	100	344	16	125	69	
	D7	4	100	465	16	125	93	
Arria V SX	В3	4	100	465	16	125	93	
Arria v SA	B5	4	100	465	16	125	93	
Arria V ST	D3	4	100	465	16	125	93	
Alla v SI	D5	4	100	465	16	125	93	

Related Information Configuration Files on page 1-83

(108) DCLK frequency of 100 MHz using external CLKUSR.
 (109) Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

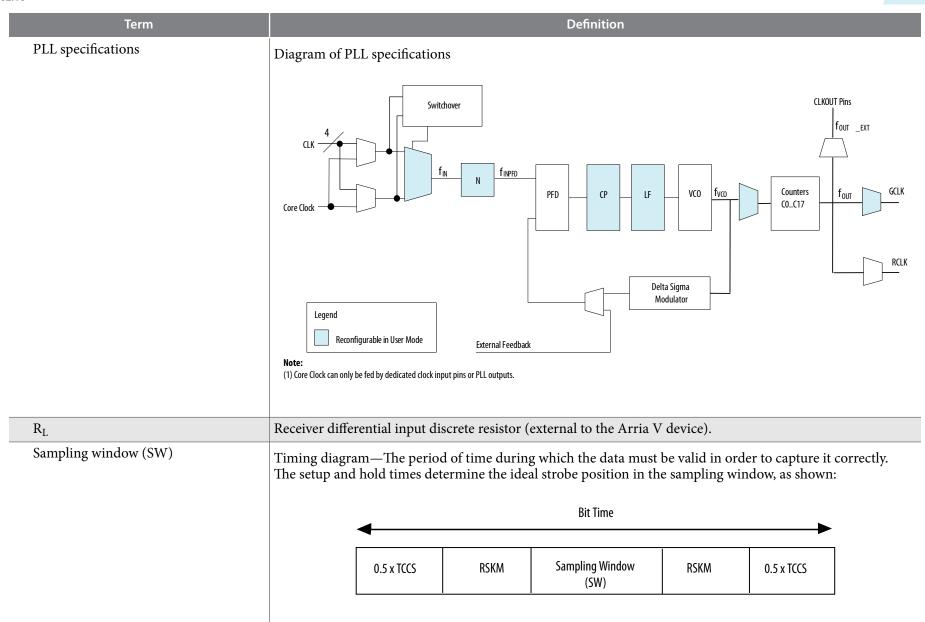
Programmable IOE Delay

Parameter ⁽¹¹² Available		Minimum	Fast Model		Slow Model					Unit	
⁾ Settings Off	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	-13	-15	Onit		
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns	
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns	
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns	
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns	

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices


This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Date	Version	Changes
Date December 2015	Version 2015.12.16	 Changes Updated Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices table. Updated F_{clk}, T_{dutycycle}, and T_{dssfrst} specifications. Added T_{qspi_clk}, T_{din_start}, and T_{din_end} specifications. Removed T_{dinmax} specifications. Updated the minimum specification for T_{clk} to 16.67 ns and removed the maximum specification in SPI Master Timing Requirements for Arria V Devices table. Updated Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices table.
		 Updated T _{clk} to T_{sdmmc_clk_out} symbol. Updated T_{sdmmc_clk_out} and T_d specifications. Added T_{sdmmc_clk}, T_{su}, and T_h specifications. Removed T_{dinmax} specifications. Updated the following diagrams: Quad SPI Flash Timing Diagram SD/MMC Timing Diagram Updated configuration .rbf sizes for Arria V devices. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.

Date	Version	Changes
August 2013	3.5	Removed "Pending silicon characterization" note in Table 29.Updated Table 25.
August 2013	3.4	 Removed Preliminary tags for Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 9, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30, Table 31, Table 35, Table 36, Table 51, Table 53, Table 54, Table 55, Table 56, Table 57, Table 60, Table 62, and Table 64. Updated Table 1, Table 3, Table 11, Table 19, Table 20, Table 21, Table 22, Table 25, and Table 29.
June 2013	3.3	Updated Table 20, Table 21, Table 25, and Table 38.
May 2013	3.2	 Added Table 37. Updated Figure 8, Figure 9, Figure 20, Figure 22, and Figure 23. Updated Table 1, Table 5, Table 10, Table 13, Table 19, Table 20, Table 21, Table 23, Table 29, Table 39, Table 40, Table 46, Table 56, Table 57, Table 60, and Table 64. Updated industrial junction temperature range for -I3 speed grade in "PLL Specifications" section.
March 2013	3.1	 Added HPS reset information in the "HPS Specifications" section. Added Table 60. Updated Table 1, Table 3, Table 17, Table 20, Table 29, and Table 59. Updated Figure 21.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
VI	DC input voltage		-0.5	_	3.6	V
V _O	Output voltage		0	_	V _{CCIO}	V
TI	Operating junction temperature	Commercial	0		85	°C
ıj	Operating junction temperature	Industrial	-40	_	100	°C
t	Power supply ramp time	Standard POR	200 µs	_	100 ms	_
t _{RAMP}		Fast POR	200 µs	—	4 ms	—

Recommended Transceiver Power Supply Operating Conditions

Table 2-6: Recommended Transceiver Power Supply Operating Conditions for Arria V GZ Devices

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	2.85	3.0	3.15	V
(119), (120)	Transcerver channel PLL power supply (left side)	2.375	2.5	2.625	
V _{CCA} _	Transseiver shannel DLL nevver supply (right side)	2.85	3.0	3.15	V
V _{CCA} GXBR ⁽¹¹⁹⁾ , ⁽¹²⁰⁾	Transceiver channel PLL power supply (right side)	2.375	2.5	2.625	v
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	0.82	0.85	0.88	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁰⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽¹¹⁹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

I/O Standard	V _{CCIO} (V)			V _{REF} (V)		V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{ m CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$
SSTL-12 Class I, II	1.14	1.20	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.53 \times V_{ m CCIO}$	_	V _{CCIO} /2	_
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	0.51 × V _{CCIO}	_	—	_

Table 2-18: Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria V GZ Devices

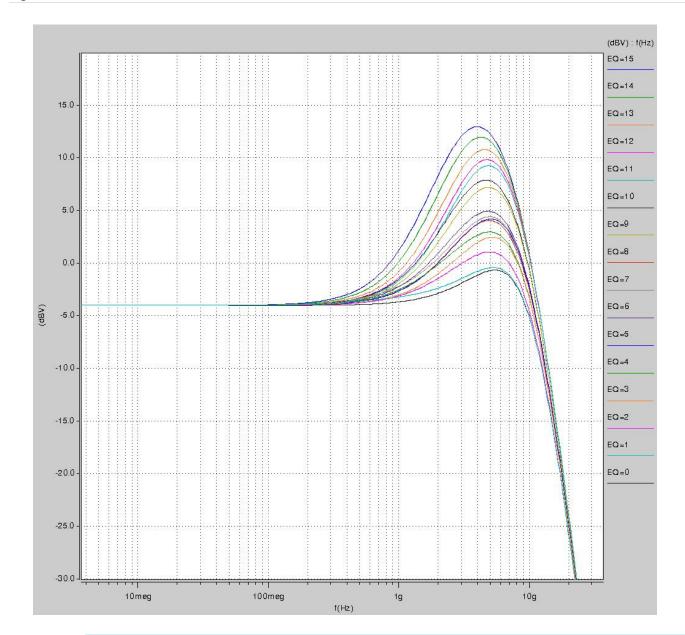
I/O Standard	V _{IL(D}	_{C)} (V)	V _{IH(DC}	_{_)} (V)	V _{IL(AC)} (V)	$V_{IL(AC)}(V)$ $V_{IH(AC)}(V)$		V _{OH} (V)	l _{ol} (mA)	l _{oh} (mA)
	Min	Max	Min	Max	Мах	Min	Max	Min	י _{סן} (וויה)	י _{oh} (יייי <i>ב</i> י)
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} - 0.603	V _{TT} + 0.603	6.7	-6.7

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

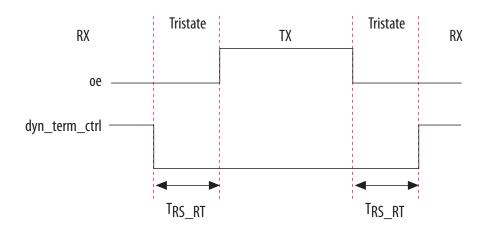

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transc	eiver Speed	Grade 2	Transce	ceiver Speed Grade 3		Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Reference Clock	Reference Clock							
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCM and HCSL	IL, 1.4-V PC	CML, 1.5-V F	CML, 2.5-V	' PCML, Di	fferential LV	PECL, LVDS,
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)

Altera Corporation



OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Мах	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R _S /R _T calibration	_	1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Table 2-55: DCLK-to-DATA[] Ratio for Arria V GZ Devices

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA[] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Arria V GZ devices use the additional clock cycles to decrypt and decompress the configuration data.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio
FPP ×8	Disabled	Disabled	1
	Disabled	Enabled	1
	Enabled	Disabled	2
	Enabled	Enabled	2
	Disabled	Disabled	1
FPP ×16	Disabled	Enabled	2
111 ×10	Enabled	Disabled	4
	Enabled	Enabled	4
	Disabled	Disabled	1
FPP ×32	Disabled	Enabled	4
111 / 52	Enabled	Disabled	8
	Enabled	Enabled	8

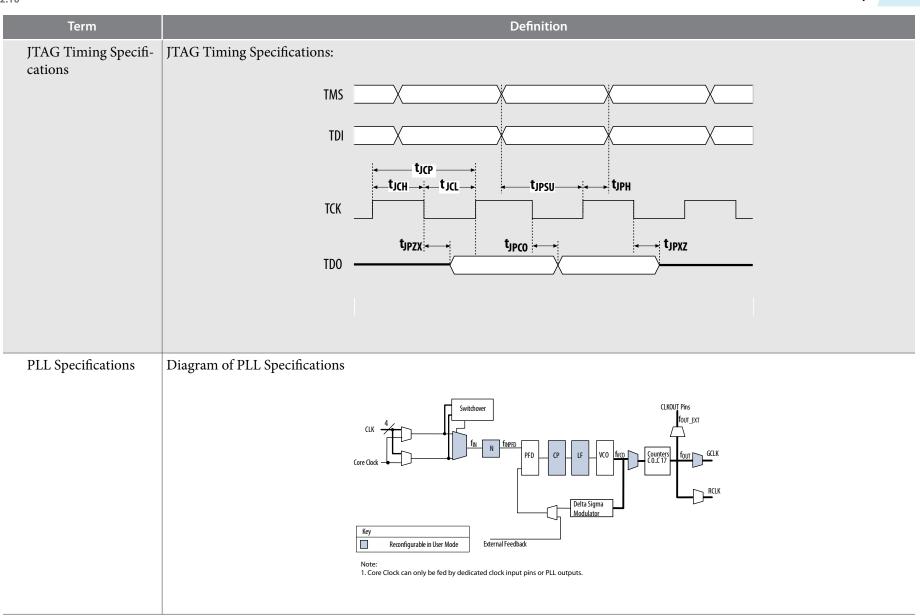


FPP Configuration Timing when DCLK to DATA[] = 1

Figure 2-7: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is 1

Timing waveform for FPP configuration when using a MAX[®] II or MAX V device as an external host.

Notes:


- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. For FPP ×16, use DATA[15..0]. For FPP ×8, use DATA[7..0]. DATA[31..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high when the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Arria V GZ Device Datasheet

