E·XFL

Intel - 5AGXMA7G4F35C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma7g4f35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Maximum	Unit
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50	mA

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
D	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled the programmable pull-up resistor option.	$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
кру		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

⁽¹⁰⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹²⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

1/O Standard	V _{IL}	_(DC) (V)	V _{IH(DC)} (V)		V _{IL(AC)} (V)	$V_{\rm IL(AC)}(V)$ $V_{\rm IH(AC)}(V)$		V _{OL} (V) V _{OH} (V)		$l_{ou}^{(14)}$ (mA)
	Min	Max	Min	Мах	Max	Min	Мах	Min	(mA)	OH (1177)
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	_	$V_{REF} - 0.2$	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	_	V _{REF} – 0.13	$V_{REF} + 0.13$	_	V _{REF} - 0.22	V _{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		V _{SWI}	_{NG(DC)} (V)	V _{X(AC)} (V)			V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Мах	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	—	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	—	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$	
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$	

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

I/O Standard		$V_{CCIO}(V)$ $V_{ID}(mV)^{(16)}$				V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹⁷⁾			V _{OCM} (V) ⁽¹⁷⁾⁽¹⁸⁾										
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max						
PCML	Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For reference clock I/O pin specifications, refer to Transceiver Specifications for Arria V GX and SX Devices and T for Arria V GT and ST Devices tables.							For trans d Transc	smitter, r ceiver Spe	receiver, and ecifications											
2.5 V	2 375	2.5	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1 125	1 25	1 375						
LVDS ⁽¹⁹⁾	2.375	2.5	2.023	100 1.2	1.25 V	1.25 V	1.25 V	1.25 V	1.25 V	1.25 V	1.25 V	_	1.05	D _{MAX} > 1.25 Gbps	1.55	0.247		0.0	1.125	1.25	1.375
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4						
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4						
				300			0.60	D _{MAX} ≤ 700 Mbps	≤ 1.80 ps												
LVILCL				500			1.00	D _{MAX} > 700 Mbps	1.60												

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		-3 speed grade	5	—	800 ⁽⁶¹⁾	MHz
f	Input clock fraguency	-4 speed grade	5		800 ⁽⁶¹⁾	MHz
IIN	input clock nequency	–5 speed grade	5	_	750 ⁽⁶¹⁾	MHz
		-6 speed grade	5		625(61)	MHz
f _{INPFD}	Integer input clock frequency to the phase frequency detector (PFD)	_	5	_	325	MHz
f _{fINPFD}	Fractional input clock frequency to the PFD		50	_	160	MHz
		-3 speed grade	600	—	1600	MHz
f (62)	PLL voltage-controlled oscillator (VCO) operating range	-4 speed grade	600	_	1600	MHz
IVCO		–5 speed grade	600		1600	MHz
		-6 speed grade	600		1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	_	40		60	%
		-3 speed grade	_	_	500 ⁽⁶³⁾	MHz
f	Output frequency for internal global or	-4 speed grade	—	—	500 ⁽⁶³⁾	MHz
LOUT	regional clock	-5 speed grade	_	_	500 ⁽⁶³⁾	MHz
		-6 speed grade	_	_	400 ⁽⁶³⁾	MHz

⁽⁶¹⁾ This specification is limited in the Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽⁶²⁾ The VCO frequency reported by the Quartus Prime software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽⁶³⁾ This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.

Symbol	Condition	-I3, -C4		-I5, -C5			-C6			Unit	
Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Unit
	SERDES factor J ≥ 8 ⁽⁷⁶⁾⁽⁷⁸⁾ , LVDS TX with RX DPA	(77)		1600	(77)		1500	(77)	_	1250	Mbps
	SERDES factor J = 1 to 2, Uses DDR Registers	(77)		(79)	(77)		(79)	(77)		(79)	Mbps
Emulated Differential I/ O Standards with Three External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)	_	945	(77)		945	(77)	_	945	Mbps
Emulated Differential I/ O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		200	(77)		200	(77)	_	200	Mbps
t _{x Jitter} -True Differential	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps			160			160		_	160	ps
	Total Jitter for Data Rate < 600 Mbps			0.1		_	0.1	_		0.1	UI

 $^{^{(78)}}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface.

⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean.

⁽⁸⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition	
SPI-4	00000000001111111111	2	128	640	
Darallel Papid I/O	00001111	2	128	640	
rataliei Kapiti 1/0	10010000	4	64	640	
Miscellaneous	10101010	8	32	640	
witscenaricous	01010101	8	32	640	

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

DLL Frequency Range Specifications

Table 1-43: DLL Frequency Range Specifications for Arria V Devices

Parameter	-I3, -C4	-I5, -C5	-C6	Unit
DLL operating frequency range	200 - 667	200 - 667	200 - 667	MHz

DQS Logic Block Specifications

Table 1-44: DQS Phase Shift Error Specifications for DLL-Delayed Clock (t_{DOS PSERR}) for Arria V Devices

This error specification is the absolute maximum and minimum error.

Number of DQS Delay Buffer	–I3, –C4	–I5, –C5	-C6	Unit
2	40	80	80	ps

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

1-88	Glossary			AV-5100 2017.02.1
	Symbol	Parameter	Typical	Unit
D _{OUTBUF}		0 (default)	ps	
	Rising and/or falling edge delay	50	ps	
		100	ps	
		150	ps	

Glossary

Table 1-78: Glossary

Term	Definition	
Differential I/O standards	Receiver Input Waveforms	
	Single-Ended Waveform	Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL}
		Ground
	Differential Waveform	
		p - n = 0 V

AV-51002

2-2 Absolute Maximum Ratings

Lower number refers to faster speed grade.

L = Low power devices.

Transceiver Speed Grade	Core Speed Grade						
	C3	C4	I3L	14			
2	Yes	_	Yes	_			
3		Yes		Yes			

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V GZ devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions other than those listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2-2: Absolute Maximum Ratings for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit
		0.82	0.85	0.88	
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V
		1.03	1.05	1.07	
		0.82	0.85	0.88	
V _{CCR_GXBR} ⁽¹²¹⁾	V _{CCR_GXBR} ⁽¹²¹⁾ Receiver analog power supply (right side)	0.97	1.0	1.03	V
		1.03	1.05	1.07	
		0.82	0.85	0.88	V
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03	
		1.03	1.05	1.07	
		0.82	0.85	0.88	
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V
		1.03	1.05	1.07	
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	—			1.6	—	_	1.6	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$			1.8	—		1.8	V
	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$			2.4	—		2.4	V
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85		_	85	_	—	mV
	85– Ω setting		85 ± 30%	—	—	85 ± 30%	_	Ω
Differential on-chip termination resistors	100– Ω setting		100 ± 30%	—	—	100 ± 30%	_	Ω
	120– Ω setting		120 ± 30%	—	_	120 ± 30%	—	Ω
	150– Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol	Conditions	C3, I3L			C4, I4			Unit
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards ⁽¹⁷⁹⁾	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	625	5	_	525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	—	5		625 (181)	5		525 (181)	MHz

Transmitter High-Speed I/O Specifications

Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

 $^{^{(179)}\,}$ This only applies to DPA and soft-CDR modes.

⁽¹⁸⁰⁾ Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.

⁽¹⁸¹⁾ This is achieved by using the LVDS clock network.

Symbol	Conditions	C3, I3L		C4, I4			Unit	
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit
t _{x Jitter} - True Differential I/O	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	—		160		—	160	ps
Standards	Total Jitter for Data Rate < 600 Mbps	—		0.1		_	0.1	UI
t _{x Jitter} - Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	—		300		—	325	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—		0.2		—	0.25	UI
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	%
	True Differential I/O Standards	_		200		—	200	ps
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks			250		_	300	ps
	True Differential I/O Standards			150		—	150	ps
TCCS	Emulated Differential I/O Standards	_	_	300		_	300	ps

Receiver High-Speed I/O Specifications

Table 2-41: Receiver High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Figure 2-4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate ≥ 1.25 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Table 2-45: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate ≥ 1.25 Gbps

Jitter Free	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Non DPA Mode High-Speed I/O Specifications

Table 2-46: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Max	Min	Тур	Max	Onic
Sampling Window	—	_		300	_		300	ps

Table 2-55: DCLK-to-DATA[] Ratio for Arria V GZ Devices

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the data rate in bytes per second (Bps), or words per second (Wps). For example, in FPP ×16 when the DCLK-to-DATA[] ratio is 2, the DCLK frequency must be 2 times the data rate in Wps. Arria V GZ devices use the additional clock cycles to decrypt and decompress the configuration data.

Configuration Scheme	Decompression	Design Security	DCLK-to-DATA[] Ratio	
FPP ×8	Disabled	Disabled	1	
	Disabled	Enabled	1	
	Enabled	Disabled	2	
	Enabled	Enabled	2	
FPP ×16	Disabled	Disabled	1	
	Disabled	Enabled	2	
	Enabled	Disabled	4	
	Enabled	Enabled	4	
FPP ×32	Disabled	Disabled	1	
	Disabled	Enabled	4	
	Enabled	Disabled	8	
	Enabled	Enabled	8	

Date	Version	Changes
June 2016	2016.06.20	 Changed column heading from "Value" to "Maximum" in the "Pin Capacitance for Arria V GZ Devices" table. Changed the minimum supported data rate range values from "1000" to "2000" in the "ATX PLL Specifications for Arria V GZ Devices" table. Added the supported data rates for the following output standards using true LVDS output buffer types in the "High-Speed Clock Specifications for Arria V GZ Devices" table: True RSDS output standard: data rates of up to 230 Mbps True mini-LVDS output standard: data rates of up to 340 Mbps
December 2015	2015.12.16	 Removed the CDR ppm tolerance specification from the "Receiver Specifications for Arria V GZ Devices" table. Removed transmitter rise and fall time specifications from the "Transmitter Specifications for Arria V GZ Devices" table. Changed the .rbf sizes in the "Uncompressed .rbf Sizes for Arria V GZ Devices" table. Added a footnote to the "Transmitter High-Speed I/O Specifications for Arria V GZ Devices" table.
June 2015	2015.06.16	 Changed the conditions for the reference clock rise and fall time and added a note to the condition in the "Reference Clock Specifications for Arria V GZ Devices" table. Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Receiver Specifications for Arria V GZ Devices" table.
January 2015	2015.01.30	 Added 240-Ω to the "OCT Calibration Accuracy Specifications for Arria V GZ Devices" table. Changed the CDR PPM tolerance spec in the "Receiver Specifications for Arria V GZ Devices" table. Added additional max data rate for fPLL in the "Fractional PLL Specifications for Arria V GZ Devices" table.

