E·XFL

Intel - 5AGXMA7G4F35C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	11460
Number of Logic Elements/Cells	242000
Total RAM Bits	15470592
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxma7g4f35c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

AV-51002 2017.02.10

Symbol	Description	Condition ()/)	Ca	Unit			
Symbol	Description		-I3, -C4	–I5, –C5	-C6		
60- Ω and 120- Ω R_{T}	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	-10 to +40	%	
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{s_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%	

OCT Without Calibration Resistance Tolerance Specifications

Table 1-9: OCT Without Calibration Resistance Tolerance Specifications for Arria V Devices

This table lists the Arria V OCT without calibration resistance to PVT changes.

Symbol	Description	Condition (V)	Re	Unit		
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
100-Ω R _D	Internal differential termination $(100-\Omega \text{ setting})$	$V_{CCIO} = 2.5$	±25	±40	±40	%

1/O Standard	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹⁴⁾	I_{a} (mA)
	Min	Max	Min	Мах	Max	Min	Мах	Min	(mA)	
HSTL-15 Class II	—	V _{REF} – 0.1	$V_{REF} + 0.1$	_	$V_{REF} - 0.2$	$V_{REF} + 0.2$	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12	_	V _{REF} – 0.13	$V_{REF} + 0.13$	_	V _{REF} - 0.22	V _{REF} + 0.22	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	_	_

Differential SSTL I/O Standards

Table 1-17: Differential SSTL I/O Standards for Arria V Devices

I/O Standard	V _{CCIO} (V) V _{SWING(DC)}		_{NG(DC)} (V)		$V_{X(AC)}(V)$	V _{SWING(AC)} (V)				
	Min	Тур	Max	Min	Мах	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.2	—	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 – 0.175	—	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(15)	V _{CCIO} /2 – 0.15	—	V _{CCIO} /2 + 0.15	$2(V_{IH(AC)} - V_{REF})$	$2(V_{IL(AC)} - V_{REF})$
SSTL-135	1.283	1.35	1.45	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

⁽¹⁴⁾ To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

 $^{^{(15)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

I/O Standard	$V_{CCIO}(V)$ $V_{ID}(mV)^{(16)}$			V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹⁷⁾			V _{OCM} (V) ⁽¹⁷⁾⁽¹⁸⁾						
	Min Typ Max Min Condition			Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max		
PCML	Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter reference clock I/O pin specifications, refer to Transceiver Specifications for Arria V GX and SX Devices and Transceiver for Arria V GT and ST Devices tables.							smitter, r ceiver Spe	receiver, and ecifications						
2.5 V	2 375	2.5	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1 125	1 25	1 375
LVDS ⁽¹⁹⁾	2.375	2.5	2.023	100	1.25 V	_	1.05	D _{MAX} > 1.25 Gbps	1.55	0.247		0.0	1.125	1.25	1.375
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4
				300			0.60	D _{MAX} ≤ 700 Mbps	1.80						
LVILCL	'ECL ⁽²²⁾ — —			500			1.00	D _{MAX} > 700 Mbps	1.60						

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		-3 speed grade			670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
IOUT_EXT	output	–5 speed grade		_	622 ⁽⁶³⁾	MHz
		–6 speed grade			500(63)	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)	_	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_		10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_		100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f_{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾		4		MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift				±50	ps
t _{ARESET}	Minimum pulse width on the areset signal		10			ns
t(65)(66)	Input clock cycle_to_cycle iitter	$F_{REF} \ge 100 \text{ MHz}$			0.15	UI (p-p)
'INCCJ		$F_{REF} < 100 \text{ MHz}$			±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Parameter	Clock Notwork	Symbol	-I3, -C4		-I5, -C5		-C6		Unit
Falametei		Symbol	Min	Max	Min	Max	Min	Max	Onic
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	6	3	9	0	9	94	ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for $R_{\rm S}$ OCT/R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out		32	_	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5		ns

Symbol	Description	Min	Тур	Max	Unit
T _{din_end}	Input data valid end	$(2 + R_{delay}) \times T_{qspi_clk} - 1.21^{(85)}$			ns

Figure 1-8: Quad SPI Flash Timing Diagram

This timing diagram illustrates clock polarity mode 0 and clock phase mode 0.

Related Information

Quad SPI Flash Controller Chapter, Arria V Hard Processor System Technical Reference Manual

Provides more information about Rdelay.

SPI Timing Characteristics

Table 1-52: SPI Master Timing Requirements for Arria V Devices

The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T _{clk}	CLK clock period	16.67	—	ns
T _{su}	SPI Master-in slave-out (MISO) setup time	8.35 (86)	—	ns

 $^{^{(85)}}$ R_{delay} is set by programming the register <code>qspiregs.rddatacap</code>. For the SoC EDS software version 13.1 and later, Altera provides automatic Quad SPI calibration in the preloader. For more information about R_{delay}, refer to the Quad SPI Flash Controller chapter in the Arria V Hard Processor System Technical Reference Manual.

1-62 SPI Timing Characteristics

Symbol	Description	Min	Max	Unit
T _h	SPI MISO hold time	1	_	ns
T _{dutycycle}	SPI_CLK duty cycle	45	55	%
T _{dssfrst}	Output delay SPI_SS valid before first clock edge	8		ns
T _{dsslst}	Output delay SPI_SS valid after last clock edge	8		ns
T _{dio}	Master-out slave-in (MOSI) output delay	-1	1	ns

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸⁶⁾ This value is based on rx_sample_dly = 1 and spi_m_clk = 120 MHz. spi_m_clk is the internal clock that is used by SPI Master to derive it's SCLK_OUT. These timings are based on rx_sample_dly of 1. This delay can be adjusted as needed to accommodate slower response times from the slave. Note that a delay of 0 is not allowed. The setup time can be used as a reference starting point. It is very crucial to do a calibration to get the correct rx_sample_dly value because each SPI slave device may have different output delay and each application board may have different path delay. For more information about rx_sample_delay, refer to the SPI Controller chapter in the Hard Processor System Technical Reference Manual.

Symbol	Description	Min	Max	Unit
$T_{dh}^{(89)}$	Data to write enable hold time	5	—	ns
T _{cea}	Chip enable to data access time		25	ns
T _{rea}	Read enable to data access time		16	ns
T _{rhz}	Read enable to data high impedance		100	ns
T _{rr}	Ready to read enable low	20	—	ns

Figure 1-17: NAND Command Latch Timing Diagram

1-96 Document Revision History

Date	Version	Changes
June 2015	2015.06.16	 Added the supported data rates for the following output standards using true LVDS output buffer types in the High-Speed I/O Specifications for Arria V Devices table:
		True RSDS output standard: data rates of up to 360 Mbps
		 True mini-LVDS output standard: data rates of up to 400 Mbps
		 Added note in the condition for Transmitter—Emulated Differential I/O Standards f_{HSDR} data rate parameter in the High-Speed I/O Specifications for Arria V Devices table. Note: When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.
		Changed Queued Serial Peripheral Interface (QSPI) to Quad Serial Peripheral Interface (SPI) Flash.
		 Updated T_h location in I²C Timing Diagram.
		 Updared T_{wp} location in NAND Address Latch Timing Diagram.
		 Corrected the unit for t_{DH} from ns to s in FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices table.
		• Updated the maximum value for t _{CO} from 4 ns to 2 ns in AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices table.
		• Moved the following timing diagrams to the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.
		FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is 1
		 FPP Configuration Timing Waveform When DCLK-to-DATA[] Ratio is >1
		AS Configuration Timing Waveform
		PS Configuration Timing Waveform

This document covers the electrical and switching characteristics for Arria V GZ devices. Electrical characteristics include operating conditions and power consumption. Switching characteristics include transceiver specifications, core, and periphery performance. This document also describes I/O timing, including programmable I/O element (IOE) delay and programmable output buffer delay.

Related Information

Arria V Device Overview

For information regarding the densities and packages of devices in the Arria V GZ family.

Electrical Characteristics

Operating Conditions

When you use Arria V GZ devices, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Arria V GZ devices, you must consider the operating requirements described in this datasheet.

Arria V GZ devices are offered in commercial and industrial temperature grades.

Commercial devices are offered in -3 (fastest) and -4 core speed grades. Industrial devices are offered in -3L and -4 core speed grades. Arria V GZ devices are offered in -2 and -3 transceiver speed grades.

Table 2-1: Commercial and Industrial Speed Grade Offering for Arria V GZ Devices

C = Commercial temperature grade; I = Industrial temperature grade.

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

2-2 Absolute Maximum Ratings

Lower number refers to faster speed grade.

L = Low power devices.

Transceiver Speed Grade	Core Speed Grade							
	C3	C4	I3L	14				
2	Yes	_	Yes	_				
3		Yes		Yes				

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V GZ devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions other than those listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2-2: Absolute Maximum Ratings for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)			$V_{X(AC)}(V)$			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{CCIO}$	_	$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{CCIO}$	0.5 × V _{CC} IO	0.6 × V _{CCIO}	0.44	0.44

Table 2-21: Differential I/O Standard Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V) ⁽¹²⁸⁾			V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)			V _{OD} (V) ⁽¹³⁰⁾			V _{OCM} (V) ⁽¹³⁰⁾			
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to the "Transceiver Performance Specifications" section.															
2.5 V LVDS (131)	2.375 2.5 2	25	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	—	0.6	1.125	1.25	1.375
		2.023 100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	—	0.6	1.125	1.25	1.375		
BLVDS (132)	2.375	2.5	2.625	100						_	_			—	

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

⁽¹³⁰⁾ RL range: $90 \le \text{RL} \le 110 \Omega$.

⁽¹³¹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

 $^{^{(132)}}$ There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	—			1.6	—	_	1.6	V
Maximum peak-to-peak differential	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$			1.8	—		1.8	V
device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$			2.4	—		2.4	V
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85		_	85	_	—	mV
	85– Ω setting		85 ± 30%	—	—	85 ± 30%	_	Ω
Differential on-chip termination	100– Ω setting		100 ± 30%	—	—	100 ± 30%	_	Ω
resistors	120– Ω setting		120 ± 30%	—	_	120 ± 30%		Ω
	150– Ω setting		150 ± 30%	_	_	150 ± 30%	_	Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onit
	DC gain setting = 0	—	0	_	_	0	—	dB
	DC gain setting = 1		2	_		2	_	dB
Programmable DC gain	DC gain setting = 2		4			4		dB
	DC gain setting = 3		6			6	_	dB
	DC gain setting = 4	_	8			8		dB

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter

Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onic
Supported I/O Standards	1.4-V and 1.5-V PCML							
Data rate (Standard PCS)	—	600	_	9900	600		8800	Mbps
Data rate (10G PCS)	_	600	_	12500	600	_	10312.5	Mbps

Symbol	Parameter	Min	Тур	Max	Unit
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	—
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Related Information

- Duty Cycle Distortion (DCD) Specifications on page 2-56
- DLL Range Specifications on page 2-53

DSP Block Specifications

Table 2-35: DSP Block Performance Specifications for Arria V GZ Devices

Mada	Performar	nce		Unit	
Mode	C3, I3L	C4	14	Onit	
Modes using One DSP Block					
Three 9 × 9	480	42	MHz		
One 18 × 18	480	420	MHz		
Two partial 18×18 (or 16×16)	480	420	MHz		
One 27 × 27	400	35	MHz		
One 36 × 18	400	35	50	MHz	
One sum of two 18×18 (One sum of two 16×16)	400	35	50	MHz	
One sum of square	400	35	50	MHz	
One 18×18 plus $36 (a \times b) + c$	400	35	50	MHz	
Modes using Two DSP Blocks					
Three 18 × 18	400	35	MHz		
One sum of four 18×18	380	30	00	MHz	

2-50 Soft CDR Mode High-Speed I/O Specifications

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽²⁰¹⁾	Maximum
Parallel Rapid I/O	00001111	2	128	640 data transitions
	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
	01010101	8	32	640 data transitions

Soft CDR Mode High-Speed I/O Specifications

Table 2-44: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L		C4, I4			Unit	
		Min	Тур	Max	Min	Тур	Max	
Soft-CDR ppm tolerance	—	_	_	300	_	_	300	± ppm

⁽²⁰¹⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output	-	4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5		ns
t _H	Data hold time after falling edge on DCLK	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁶⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × clkusr period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Term	Definition
t _C	High-speed receiver and transmitter input and output clock period.
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).
t _{DUTY}	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
t _{FALL}	Signal high-to-low transition time (80-20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(\text{receiver input clock frequency multiplication factor}) = t_C/w)$
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage

Altera Corporation

