

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	14151
Number of Logic Elements/Cells	300000
Total RAM Bits	17358848
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb1g4f31i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Arria V GX, GT, SX, and ST Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria® V devices.

Arria V devices are offered in commercial and industrial grades. Commercial devices are offered in -C4 (fastest), -C5, and -C6 speed grades. Industrial grade devices are offered in the -I3 and -I5 speed grades.

Related Information

Arria V Device Overview

Provides more information about the densities and packages of devices in the Arria V family.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Arria V devices.

Operating Conditions

Arria V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria V devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Arria V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

[©] 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I/O Standard		V _{CCIO} (V)			V _{SWING(DC)} (V) V _{X(AC)} (V)		V _{X(AC)} (V)		V _{S\}	_{WING(AC)} (V)
	Min	Тур	Max	Min	Мах	Min	Тур	Мах	Min	Max
SSTL-125	1.19	1.25	1.31	0.18	(15)	V _{CCIO} /2 – 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} – V _{REF})	$2(V_{IL(AC)} - V_{REF})$

Differential HSTL and HSUL I/O Standards

Table 1-18: Differential HSTL and HSUL I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)	V _{DII}	_{F(DC)} (V)	V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	—	1.12	0.78		1.12	0.4	
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	—	0.9	0.68		0.9	0.4	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{ m CCIO}$	_	$0.4 \times V_{ m CCIO}$	$0.5 \times V_{ m CCIO}$	$0.6 \times V_{ m CCIO}$	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	$\begin{array}{c} 0.5 \times \\ V_{\rm CCIO} - \\ 0.12 \end{array}$	$0.5 imes V_{ m CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{\rm CCIO}$	$0.5 \times V_{ m CCIO}$	0.6 × V _{CCIO}	0.44	0.44

Differential I/O Standard Specifications

Table 1-19: Differential I/O Standard Specifications for Arria V Devices

Differential inputs are powered by V_{CCPD} which requires 2.5 V.

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Trans	Transceiver Speed Grade 4			eiver Speed G	irade 6	Unit
	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Supported I/O standards	1.2 V PCM	1.2 V PCML, 1.4 V PCML, 1.5 V PCML, 2.5 V PCML, Differential LVPECL ⁽²³⁾ , HCSL, and LVDS						LVDS
Input frequency from REFCLK input pins	_	27		710	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁴⁾			400			400	ps
Fall time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽²⁴⁾	_		400			400	ps
Duty cycle		45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	300 ⁽²⁵⁾ / 2000	200		300 ⁽²⁵⁾ / 2000	mV

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onit	
Run length	—	—	_	200		_	200	UI	
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Gain and Response	Refer to CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices and CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices diagrams.						

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed C	Grade 4	Transc	eiver Speed G	irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611	_	6553.6	611		3125	Mbps
V _{OCM} (AC coupled)			650	_		650		mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	—	85	_		85		Ω
Differential on-chip	100- Ω setting	—	100	_		100		Ω
termination resistors	120- Ω setting	—	120	_		120		Ω
	150-Ω setting	—	150	_		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps		_	15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode			180			180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Мах	Unit	
Interface speed (PMA direct mode)	50	153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾	MHz	
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36

⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected.

⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st			Quar	tus Prime V _{OD} Se	etting			
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	_	10.2	6.09	5.01	4.23	3.61	—	dB
12	_	11.56	6.74	5.51	4.68	3.97	—	dB
13	_	12.9	7.44	6.1	5.12	4.36	—	dB
14	_	14.44	8.12	6.64	5.57	4.76	_	dB
15	_	_	8.87	7.21	6.06	5.14	—	dB

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

DSP Block Performance Specifications

	Mode		Performance		Unit	
	Moue	–I3, –C4	-I5, -C5	-C6	Onit	
	Independent 9×9 multiplication	370	310	220	MHz	
	Independent 18×19 multiplication	370	310	220	MHz	
	Independent 18 × 25 multiplication	370	310	220	MHz	
Modes using One DSP	Independent 20×24 multiplication	370	310	220	MHz	
Block	Independent 27×27 multiplication	310	250	200	MHz	
	Two 18×19 multiplier adder mode	370	310	220	MHz	
	18×18 multiplier added summed with 36- bit input	370	310	220	MHz	
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	370	310	220	MHz	

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .


Arria V GX, GT, SX, and ST Device Datasheet

Table 1-57: RGMII RX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Unit
T _{clk} (1000Base-T)	RX_CLK clock period		8	ns
T _{clk} (100Base-T)	RX_CLK clock period		40	ns
T _{clk} (10Base-T)	RX_CLK clock period		400	ns
T _{su}	RX_D/RX_CTL setup time	1		ns
T _h	RX_D/RX_CTL hold time	1	—	ns

Figure 1-14: RGMII RX Timing Diagram

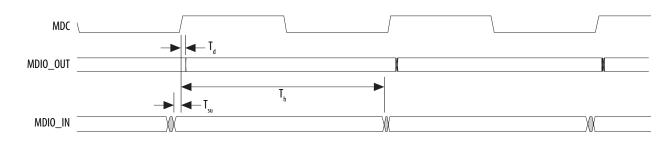


Table 1-58: Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	MDC clock period	_	400	_	ns
T _d	MDC to MDIO output data delay	10		20	ns
T _s	Setup time for MDIO data	10		_	ns
T _h	Hold time for MDIO data	0	_		ns

Figure 1-15: MDIO Timing Diagram

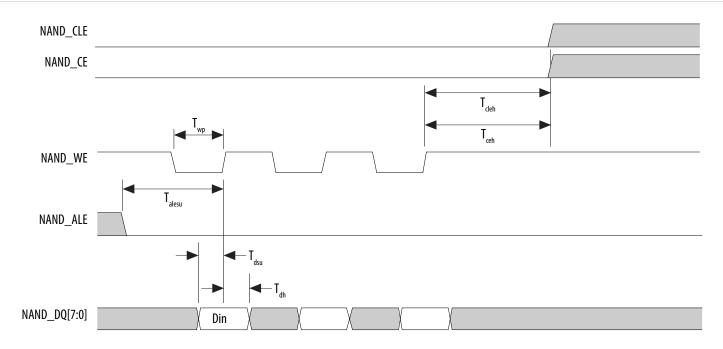

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Sumbol	Symbol Description –	Standard Mode		Fast Mode		Unit	
Symbol		Min	Max	Min	Max	Onic	
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs	
T _{clkhigh}	SCL high time	4.7	—	0.6		μs	
T _{clklow}	SCL low time	4	_	1.3		μs	
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs	
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs	
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs	
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs	

Figure 1-19: NAND Data Write Timing Diagram

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit	
Standard	100	300	ms	

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

FPP Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP $\times 16$ where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 1-65: DCLK-to-DATA[] Ratio for Arria V Devices

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	Off	Off	1
FPP (8-bit wide)	On	Off	1
rrr (o-on wide)	Off	On	2
	On	On	2
	Off	Off	1
FPP (16-bit wide)	On	Off	2
FFF (10-bit wide)	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLKto-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria V Devices table.

Table 1-66: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Term		Definition				
		Definition				
Single-ended voltage referenced I/O standard	 The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The values indicate the voltage levels at which the receiver must meet its timing specifications. The DC valu indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approad is intended to provide predictable receiver timing in the presence of input waveform ringing. Single-Ended Voltage Referenced I/O Standard 					
			V _{CCI0}			
	V _{0Н}	V _{OH}				
			VIH(DC)			
		V REF	/ V _{IL(DC)}			
		/	/ V il(AC)			
	V _{0L}					
			V _{SS}			
t _C	High-speed receiver/transmitter input and output clock period.					
TCCS (channel-to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).					
t _{DUTY}	High-speed I/O block—Duty cycl	e on high-speed transmitter outpu	t clock.			

2-2 Absolute Maximum Ratings

Lower number refers to faster speed grade.

L = Low power devices.

Transceiver Speed Grade	Core Speed Grade						
	C3	C4	I3L	14			
2	Yes	_	Yes	-			
3		Yes		Yes			

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Arria V GZ devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

Caution: Conditions other than those listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2-2: Absolute Maximum Ratings for Arria V GZ Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Power supply for core voltage and periphery circuitry	-0.5	1.35	V
V _{CCPT}	Power supply for programmable power technology	-0.5	1.8	V
V _{CCPGM}	Power supply for configuration pins	-0.5	3.9	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology	-0.5	3.4	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.9	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.9	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCD_FPLL}	PLL digital power supply	-0.5	1.8	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.4	V

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	
Programmable DC gain	DC gain setting = 0		0	_	—	0	_	dB
	DC gain setting = 1	—	2	_		2	_	dB
	DC gain setting = 2		4	_		4		dB
	DC gain setting = 3	—	6	_	_	6	_	dB
	DC gain setting = 4	_	8	—	_	8	—	dB

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter

Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit
Supported I/O Standards	1.4-V and 1.5-V PCML							
Data rate (Standard PCS)	—	600	_	9900	600	_	8800	Mbps
Data rate (10G PCS)	_	600		12500	600	_	10312.5	Mbps

Typical VOD Settings

The tolerance is +/-20% for all VOD settings ex	cept for settings 2 and below	r.		
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	0 (166)	0	32	640
	1 ⁽¹⁶⁶⁾	20	33	660
	2(166)	40	34	680
	3(166)	60	35	700
	4 ⁽¹⁶⁶⁾	80	36	720
	5 ⁽¹⁶⁶⁾	100	37	740
	6	120	38	760
$ m V_{OD}$ differential peak to peak typical	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

2-44 Periphery Performance

Description	Min	Тур	Max	Unit
Diode ideality factor	1.006	1.008	1.010	—

Periphery Performance

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

Note: The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

High-Speed Clock Specifications

Table 2-39: High-Speed Clock Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

Arria V GZ devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 230 Mbps
- True mini-LVDS output standard with data rates of up to 340 Mbps

AV-51002 2017.02.10

Symbol	Conditions	C3, I3L		C4, I4			Unit	
		Min	Тур	Мах	Min	Тур	Max	Onit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards ⁽¹⁷⁹⁾	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	625	5		525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5		625	5	_	525	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(180)}$	5	_	420	5		420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	625 (181)	5	—	525 (181)	MHz

Transmitter High-Speed I/O Specifications

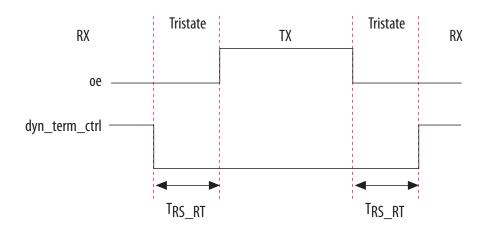
Table 2-40: Transmitter High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

 $^{^{(179)}\,}$ This only applies to DPA and soft-CDR modes.

⁽¹⁸⁰⁾ Clock Boost Factor (W) is the ratio between the input data rate to the input clock rate.


⁽¹⁸¹⁾ This is achieved by using the LVDS clock network.

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Мах	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	_		20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R _S /R _T calibration	_	1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

2-64 FPP Configuration Timing when DCLK to DATA[] > 1

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (215)	_	-

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁵⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.