E·XFL

Intel - 5AGXMB3G4F40C5N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb3g4f40c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
V _{CC_AUX_SHARED}	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

AV-51002 2017.02.10

Symbol	Symbol		Ca	Unit		
Symbol	Description		-I3, -C4	–I5, –C5	-C6	Onit
60- Ω and 120- Ω R_T	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	-10 to +40	%
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{S_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

OCT Without Calibration Resistance Tolerance Specifications

Table 1-9: OCT Without Calibration Resistance Tolerance Specifications for Arria V Devices

This table lists the Arria V OCT without calibration resistance to PVT changes.

Symbol	Description	Condition (V)		ResistanceTolerance			
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont	
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%	
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%	
100-Ω R _D	Internal differential termination $(100-\Omega \text{ setting})$	$V_{CCIO} = 2.5$	±25	±40	±40	%	

Cumbal	Condition	-I3, -C4		–I5, –C5		-C6		11			
Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{x Jitter} -Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps	_		260	_	_	300	_		350	ps
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	—		0.16	_	_	0.18	_		0.21	UI
t _{x Jitter} -Emulated Differential I/O Standards with One External Output Resistor Network	_			0.15		_	0.15			0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
	True Differential I/O Standards ⁽⁸²⁾			160	_	_	180			200	ps
t _{RISE} and t _{FALL}	Emulated Differential I/O Standards with Three External Output Resistor Network		_	250		_	250		_	300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network	_		500	_		500	_		500	ps

 $^{^{(82)}\,}$ This applies to default pre-emphasis and V_{OD} settings only.

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

HPS Clock Performance

Table 1-48: HPS Clock Performance for Arria V Devices

Symbol/Description	-13	-C4	–C5, –I5	-C6	Unit
mpu_base_clk (microprocessor unit clock)	1050	925	800	700	MHz
main_base_clk (L3/L4 interconnect clock)	400	400	400	350	MHz
h2f_user0_clk	100	100	100	100	MHz
h2f_user1_clk	100	100	100	100	MHz
h2f_user2_clk	200	200	200	160	MHz

HPS PLL Specifications

HPS PLL VCO Frequency Range

Table 1-49: HPS PLL VCO Frequency Range for Arria V Devices

Description	Speed Grade	Minimum	Maximum	Unit
VCO range	-C5, -I5, -C6	320	1,600	MHz
	-C4	320	1,850	MHz
	-I3	320	2,100	MHz

HPS PLL Input Clock Range

The HPS PLL input clock range is 10 – 50 MHz. This clock range applies to both HPS_CLK1 and HPS_CLK2 inputs.

Related Information

Clock Select, Booting and Configuration chapter

Provides more information about the clock range for different values of clock select (CSEL).

Figure 1-18: NAND Address Latch Timing Diagram

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance		14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit	
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns	
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns	

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

1-88	Glossary			AV-5100 2017.02.1
	Symbol	Parameter	Typical	Unit
			0 (default)	ps
D _{OUTBUF}	Rising and/or falling edge delay	50	ps	
		100	ps	
			150	ps

Glossary

Table 1-78: Glossary

Term	Definition	
Differential I/O standards	Receiver Input Waveforms	
	Single-Ended Waveform	Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL}
		Ground
	Differential Waveform	
		p - n = 0 V

AV-51002

1-100 Document Revision History

Date	Version	Changes
November 2012	3.0	 Updated Table 2, Table 4, Table 9, Table 14, Table 16, Table 17, Table 20, Table 21, Table 25, Table 29, Table 36, Table 56, Table 57, and Table 60. Removed table: Transceiver Block Jitter Specifications for Arria V Devices. Added HPS information: Added "HPS Specifications" section. Added Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, and Table 50. Added Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19. Updated Table 3 and Table 5.
October 2012	2.4	 Updated Arria V GX V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, and V_{CCL_GXBL/R} minimum and maximum values, and data rate in Table 4. Added receiver V_{ICM} (AC coupled) and V_{ICM} (DC coupled) values, and transmitter V_{OCM} (AC coupled) and V_{OCM} (DC coupled) values in Table 20 and Table 21.
August 2012	2.3	Updated the SERDES factor condition in Table 30.
July 2012	2.2	 Updated the maximum voltage for V_I (DC input voltage) in Table 1. Updated Table 20 to include the Arria V GX -I3 speed grade. Updated the minimum value of the fixedclk clock frequency in Table 20 and Table 21. Updated the SERDES factor condition in Table 30. Updated Table 50 to include the IOE programmable delay settings for the Arria V GX -I3 speed grade.
June 2012	2.1	Updated V _{CCR_GXBL/R} , V _{CCT_GXBL/R} , and V _{CCL_GXBL/R} values in Table 4.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
V _{CCPT}	Power supply for programmable power technology	—	1.45	1.50	1.55	V
V _{CC_AUX}	Auxiliary supply for the programmable power technology		2.375	2.5	2.625	V
V _{CCPD} (116	I/O pre-driver (3.0 V) power supply		2.85	3.0	3.15	V
)	I/O pre-driver (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply		2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply		2.375	2.5	2.625	V
	I/O buffers (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCIO}	I/O buffers (1.5 V) power supply		1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply		1.283	1.35	1.45	V
	I/O buffers (1.25 V) power supply		1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply		1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply		2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply		1.71	1.8	1.89	V
V _{CCA} _	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCD} FPLL	PLL digital voltage regulator power supply		1.45	1.5	1.55	V
V _{CCBAT} (117	Battery back-up power supply (For design security volatile key register)		1.2		3.0	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.
Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁶⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.

⁽¹¹⁷⁾ If you do not use the design security feature in Arria V GZ devices, connect V_{CCBAT} to a 1.2- to 3.0-V power supply. Arria V GZ power-on-reset (POR) circuitry monitors V_{CCBAT}. Arria V GZ devices do not exit POR if V_{CCBAT} is not powered up.

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)			$V_{X(AC)}(V)$		V _{CM(DC)} (V)		V _{DIF(AC)} (V)			
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{CCIO}$	_	$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{CCIO}$	0.5 × V _{CC} IO	0.6 × V _{CCIO}	0.44	0.44

Table 2-21: Differential I/O Standard Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V) ⁽¹²⁸⁾		V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹³⁰⁾		V _{OCM} (V) ⁽¹³⁰⁾						
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	PCML Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to the "Transceiver Performance Specifications" section.														
2.5 V LVDS (131)	2.375 2.5 2.625	2 625	25 100	V _{CM} =		0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	—	0.6	1.125	1.25	1.375	
		1.25 \	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	—	0.6	1.125	1.25	1.375		
BLVDS (132)	2.375	2.5	2.625	100				_		_	_			—	

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

⁽¹³⁰⁾ RL range: $90 \le \text{RL} \le 110 \Omega$.

⁽¹³¹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

 $^{^{(132)}}$ There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.

2-32 Standard PCS Data Rate

	ATX PLL			CMU PLL ⁽¹⁶¹⁾			fPLL		
Clock Network	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (Native PHY IP)	8.0	8.0	Up to 13 channels above and below PLL			Up to 13 channels above and below PLL	3.125	3.125	Up to 13 channels
		8.01 to 9.8304	Up to 7 channels above and below PLL	7.99	7.99				above and below PLL

Standard PCS Data Rate

Table 2-30: Standard PCS Approximate Maximum Date Rate (Gbps) for Arria V GZ Devices

The maximum data rate is also constrained by the transceiver speed grade. Refer to the "Commercial and Industrial Speed Grade Offering for Arria V GZ Devices" table for the transceiver speed grade.

Mode ⁽¹⁶⁴⁾ Ti Sp	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	Speed Grade	PCS/Core Width	40	20	32	16	20	10	16	8
EIEO	2	C3, I3L core speed grade	9.9	9	7.84	7.2	5.3	4.7	4.24	3.76
1110	3	C4, I4 core speed grade	8.8	8.2	7.2	6.56	4.8	4.3	3.84	3.44

⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)

Altera Corporation

Symbol	Parameter	Min	Тур	Мах	Unit
t (173) (175)	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTPJ_IO	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		60	mUI (p-p)
t (173) (175) (176)	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
tFOUTPJ_IO	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t (173) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)	_		60	mUI (p-p)
t (173) (175) (176)	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		600	ps (p-p)
"FOUTCCJ_IO",	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)			175	ps (p-p)
CASC_OUTPJ_DC	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)			17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 2-57: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (210)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 (211)	μs
t _{CF2CK} ⁽²¹²⁾	nCONFIG high to first rising edge on DCLK	1,506		μs
t _{ST2CK} ⁽²¹²⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽²¹³⁾	_	S
t _{CH}	DCLK high time	$0.45 \times 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}		S
£	DCLK frequency (FPP ×8/×16)	—	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁴⁾	175	437	μs

⁽²¹⁰⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹¹⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{(212)}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

 $^{(213)}$ N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.

⁽²¹⁴⁾ The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

Arria V GZ Device Datasheet

Altera Corporation

Programmable IOE Delay

Fast Model Slow Model Available Parameter (228) Min Offset (229) Unit Settings Industrial Commercial C3 C4 I3L 14 D1 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0 D2 32 0.230 0.244 0.459 0.503 0.456 0.500 ns D3 8 0 1.699 2.992 3.192 1.587 3.047 3.257 ns 0 D4 64 0.464 0.492 0.924 1.011 0.920 1.006 ns D5 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0.499 D6 32 0 0.244 0.503 0.229 0.458 0.456 ns

Table 2-66: IOE Programmable Delay for Arria V GZ Devices

Programmable Output Buffer Delay

Table 2-67: Programmable Output Buffer Delay for Arria V GZ Devices

You can set the programmable output buffer delay in the Quartus II software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D _{OUTBUF}	Dising and/or falling adge delay	50	ps
	Rising and/or failing edge delay	100	ps
		150	ps

⁽²²⁸⁾ You can set this value in the Quartus II software by selecting **D1**, **D2**, **D3**, **D4**, **D5**, and **D6** in the **Assignment Name** column of **Assignment Editor**.

⁽²²⁹⁾ Minimum offset does not include the intrinsic delay.

Term	Definition		
	Single-Ended WaveformVODPositive Channel (p) = VOHVCMNegative Channel (n) = VOLGroundGround		
	Differential Waveform V_{0D} V_{0D} V_{0D} V_{0D}		
f _{HSCLK}	Left and right PLL input clock frequency.		
f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.		
f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		
J	High-speed I/O block—Deserialization factor (width of parallel data bus).		

Date	Version	Changes
June 2016	2016.06.20	 Changed column heading from "Value" to "Maximum" in the "Pin Capacitance for Arria V GZ Devices" table. Changed the minimum supported data rate range values from "1000" to "2000" in the "ATX PLL Specifications for Arria V GZ Devices" table. Added the supported data rates for the following output standards using true LVDS output buffer types in the "High-Speed Clock Specifications for Arria V GZ Devices" table: True RSDS output standard: data rates of up to 230 Mbps True mini-LVDS output standard: data rates of up to 340 Mbps
December 2015	2015.12.16	 Removed the CDR ppm tolerance specification from the "Receiver Specifications for Arria V GZ Devices" table. Removed transmitter rise and fall time specifications from the "Transmitter Specifications for Arria V GZ Devices" table. Changed the .rbf sizes in the "Uncompressed .rbf Sizes for Arria V GZ Devices" table. Added a footnote to the "Transmitter High-Speed I/O Specifications for Arria V GZ Devices" table.
June 2015	2015.06.16	 Changed the conditions for the reference clock rise and fall time and added a note to the condition in the "Reference Clock Specifications for Arria V GZ Devices" table. Added a note to the "Minimum differential eye opening at receiver serial input pins" specification in the "Receiver Specifications for Arria V GZ Devices" table.
January 2015	2015.01.30	 Added 240-Ω to the "OCT Calibration Accuracy Specifications for Arria V GZ Devices" table. Changed the CDR PPM tolerance spec in the "Receiver Specifications for Arria V GZ Devices" table. Added additional max data rate for fPLL in the "Fractional PLL Specifications for Arria V GZ Devices" table.

