E·XFL

Intel - 5AGXMB3G6F31C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	17110
Number of Logic Elements/Cells	362000
Total RAM Bits	19822592
Number of I/O	384
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb3g6f31c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1-4 Recommended Operating Conditions

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.8	100	%
		3.85	68	%
		3.9	45	%
		3.95	28	%
		4	15	%
		4.05	13	%
		4.1	11	%
		4.15	9	%
Vi (AC)	AC input voltage	4.2	8	%
		4.25	7	%
		4.3	5.4	%
		4.35	3.2	%
		4.4	1.9	%
		4.45	1.1	%
		4.5	0.6	%
		4.55	0.4	%
		4.6	0.2	%

Recommended Operating Conditions

This section lists the functional operation limits for the AC and DC parameters for Arria V devices.

Recommended Operating Conditions

Table 1-3: Recommended Operating Conditions for Arria V Devices

This table lists the steady-state voltage values expected from Arria V devices. Power supply ramps must all be strictly monotonic, without plateaus.

AV-51002 2017.02.10

1-5

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Coro voltago powor supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V _{CC}	Core voltage power suppry	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V CCP	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V _{CCPGM}	Configuration pins power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	—	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
V _{CCPD} ⁽³⁾	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

(2) If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

⁽³⁾ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

		V _{CCIO} (V)																
Parameter Symbo	Symbol	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit			
							Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V			

OCT Calibration Accuracy Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 1-8: OCT Calibration Accuracy Specifications for Arria V Devices

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Symbol	Description	Condition (\/)	Ca	Unit		
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont
25-Ω R _S	Internal series termination with calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R_S	Internal series termination with calibration (34- Ω and 40- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80- Ω R _S	Internal series termination with calibration (48- Ω , 60- Ω , and 80- Ω setting)	$V_{CCIO} = 1.2$	±15	±15	±15	%
50-Ω R_T	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20- Ω , 30- Ω , 40- Ω ,60- Ω , and 120- Ω R _T	Internal parallel termination with calibration (20- Ω , 30- Ω , 40- Ω , 60- Ω , and 120- Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic	
Run length	—	—	_	200	—		200	UI	
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Refer to C Gain and Response G	TLE Respons DC Gain for at Data Rates ain for Arria	e at Data Rat Arria V GX, s ≤ 3.25 Gbps V GX, GT, S2	es > 3.25 Gbj GT, SX, and across Supp K, and ST De	ps across Sup ST Devices a orted AC Gai vices diagram	ported AC nd CTLE n and DC ns.	dB	

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transceiver Speed Grade		irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onit
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611		6553.6	611	_	3125	Mbps
V _{OCM} (AC coupled)	_	_	650	_		650	_	mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	_	85	_		85	_	Ω
Differential on-chip	100- Ω setting	—	100	—	_	100	_	Ω
termination resistors	120- Ω setting		120			120		Ω
	150-Ω setting	_	150	_		150	_	Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps	—	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode	_	_	180	_	—	180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Symbol/Description	Condition	Tran	Unit		
Symbol Description	Condition	Min	Тур	Max	Onic
The new itter and the second is (43)	10 Hz	_	—	-50	dBc/Hz
	100 Hz			-80	dBc/Hz
	1 KHz			-110	dBc/Hz
Hansmitter REPCLK phase hoise	10 KHz			-120	dBc/Hz
	100 KHz			-120	dBc/Hz
	≥ 1 MHz			-130	dBc/Hz
R _{REF}	_		2000 ±1%		Ω

Table 1-27: Transceiver Clocks Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit		
Symbol/Description	Condition	Min	Тур	Max	om
fixedclk clock frequency	PCIe Receiver Detect	_	125		MHz
Transceiver Reconfiguration Controller IP (mgmt_clk_clk) clock frequency	—	75	—	125	MHz

Table 1-28: Receiver Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	T	Linit				
	Condition	Min	Тур Мах	Мах	Onit		
Supported I/O Standards	1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS						
Data rate (6-Gbps transceiver) ⁽⁴⁴⁾	_	611		6553.6	Mbps		

⁽⁴³⁾ The transmitter REFCLK phase jitter is 30 ps p-p (5 ps RMS) with bit error rate (BER) 10⁻¹², equivalent to 14 sigma.

⁽⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
t _{FOUTPJ_DC} ⁽⁶⁷⁾	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t _{OUTCCJ_DC} ⁽⁶⁷⁾	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
	output in integer PLL	F _{OUT} < 100 MHz	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁶⁷⁾	Cycle-to-cycle jitter for dedicated clock output in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
		F _{OUT} < 100 MHz	—	_	25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
(67)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
OUTPJ_IO	regular I/O in integer PLL	F _{OUT} < 100 MHz	—		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t (67)(70)	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
OUTCCJ_IO	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
t _{FOUTCCJ_IO}	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

HPS PLL Input Jitter

Use the following equation to determine the maximum input jitter (peak-to-peak) the HPS PLLs can tolerate. The divide value (N) is the value programmed into the denominator field of the VCO register for each PLL. The PLL input reference clock is divided by this value. The range of the denominator is 1 to 64.

Maximum input jitter = Input clock period × Divide value (N) × 0.02

Table 1-50: Examples of Maximum Input Jitter

Input Reference Clock Period	Divide Value (N)	Maximum Jitter	Unit
40 ns	1	0.8	ns
40 ns	2	1.6	ns
40 ns	4	3.2	ns

Quad SPI Flash Timing Characteristics

Table 1-51: Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
F _{clk}	SCLK_OUT clock frequency (External clock)	_	_	108	MHz
T _{qspi_clk}	QSPI_CLK clock period (Internal reference clock)	2.32			ns
T _{dutycycle}	SCLK_OUT duty cycle	45		55	%
T _{dssfrst}	Output delay QSPI_SS valid before first clock edge		1/2 cycle of SCLK_OUT		ns
T _{dsslst}	Output delay QSPI_SS valid after last clock edge	-1		1	ns
T _{dio}	I/O data output delay	-1		1	ns
T _{din_start}	Input data valid start			$(2 + R_{delay}) \times T_{qspi_clk} - 7.52^{(85)}$	ns

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standar	d Mode	Fast I	Mode	Unit	
Symbol			Max	Min	Max	Ont	
T _{clk}	Serial clock (SCL) clock period	10	—	2.5		μs	
T _{clkhigh}	SCL high time	4.7	—	0.6		μs	
T _{clklow}	SCL low time	4	—	1.3		μs	
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1		μs	
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs	
T _d	SCL to SDA output data delay	—	0.2		0.2	μs	
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6		μs	
T _{hd_start}	Hold time for a repeated start condition	4	_	0.6		μs	
T _{su_stop}	Setup time for a stop condition	4	_	0.6	_	μs	

Date	Version	Changes
January 2015	2015.01.30	Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices
		• Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		• Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		• Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.
		• Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).
		Changed the symbol for HPS PLL input jitter divide value from NR to N.
		• Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices
		 Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.
		Added HPS JTAG timing specifications.
		• Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{JPCO} = 13$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.
		• Updated the value in the V _{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
VI	DC input voltage	_	-0.5	_	3.6	V
Vo	Output voltage		0		V _{CCIO}	V
 Т_	One reting junction temperature	Commercial	0		85	°C
1 j	Operating junction temperature	Industrial	-40	_	Maximum (114) 3.6 V _{CCIO} 85 100 100 ms 4 ms	°C
t	Davian aunalis some time	Standard POR	200 µs	_	100 ms	
•RAMP		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	—			

Recommended Transceiver Power Supply Operating Conditions

Table 2-6: Recommended Transceiver Power Supply Operating Conditions for Arria V GZ Devices

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit
V _{CCA GXBL}	Transceiver channel DLL nevver supply (left side)	2.85	3.0	3.15	V
(119), (120)	Transceiver channel PLL power supply (left side)	Minimum (118) Typical Maximum (118) 2.85 3.0 3.15 2.375 2.5 2.625 2.85 3.0 3.15 2.375 2.5 2.625 2.375 2.5 2.625 0.82 0.85 0.88 0.82 0.85 0.88 0.82 0.85 0.88	v		
V _{CCA}	Transceiver channel DL newer supply (right side)	2.85	3.0	3.15	V
GXBR ⁽¹¹⁹⁾ , ⁽¹²⁰⁾	Transceiver channel FLL power supply (fight side)	2.375	2.5	Maximum ⁽¹¹⁸⁾ 3.15 2.625 3.15 2.625 0.88 0.88 0.88 0.88	
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	0.82	0.85	0.88	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁰⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽¹¹⁹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

Bus Hold Specifications

Table 2-9: Bus Hold Parameters for Arria V GZ Devices

			V _{CCIO}										
Parameter	Symbol	Conditions	1.2	2 V	1.5	5 V	1.8	3 V	2.5	5 V	3.0	V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5	_	25.0	_	30.0		50.0	_	70.0	_	μΑ
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Low overdrive current	I _{ODL}	$0V < V_{IN} < V_{CCIO}$	_	120	_	160	_	200	_	300	_	500	μΑ
High overdrive current	I _{ODH}	$0V < V_{IN} < V_{CCIO}$	—	-120	_	-160	_	-200		-300	_	-500	μΑ
Bus-hold trip point	V _{TRIP}		0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block.

Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices

OCT calibration accuracy is valid at the time of calibration only.

Sumbol	Description	Conditions	Resistance	Unit	
Symbol	Description	Conditions	C3, I3L	C4, I4	Unit
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%
100-Ω R _D	Internal differential termination (100- Ω setting)	$V_{CCIO} = 2.5 V$	±25	±25	%

Figure 2-1: OCT Variation Without Re-Calibration for Arria V GZ Devices

$$\mathbf{R}_{\text{OCT}} = \mathbf{R}_{\text{SCAL}} \left(1 + \left(\frac{dR}{dT} \times \bigtriangleup T \right) \pm \left(\frac{dR}{dV} \times \bigtriangleup V \right) \right)$$

Notes:

1. The R_{oct} value shows the range of OCT resistance with the variation of temperature and V_{ccio} . 2. R_{scAL} is the OCT resistance value at power-up. 3. ΔT is the variation of temperature with respect to the temperature at power-up. 4. ΔV is the variation of voltage with respect to the V_{ccio} at power-up. 5. dR/dT is the percentage change of R_{scAL} with temperature. 6. dR/dV is the percentage change of R_{scAL} with voltage

6. dR/dV is the percentage change of R_{SCAL} with voltage.

Table 2-12: OCT Variation after Power-Up Calibration for Arria V GZ Devices

Valid for a V_{CCIO} range of \pm 5% and a temperature range of 0° to 85°C.

|--|

Symbol/Description	Conditions	Transce	eiver Speed	Grade 2	Transce	eiver Speed	llmit	
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Rise time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	nc
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	—		400			400	ps
Duty cycle	—	45		55	45	—	55	%
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30		33	30	_	33	kHz
Spread-spectrum downspread	PCIe		0 to	_		0 to		%
			-0.5			-0.5		
On-chip termination resistors	—	_	100	_		100		Ω
Absolute V _{MAX}	Dedicated reference clock pin	—		1.6			1.6	V
	RX reference clock pin	_		1.2			1.2	
Absolute V _{MIN}	—	-0.4	_	_	-0.4	—	_	V
Peak-to-peak differential input voltage	—	200		1600	200	_	1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	100	00/900/850	(139)	1000/900/850 (139)			mV
	RX reference clock pin	1.	0/0.9/0.85 (1	40)	1.	0/0.9/0.85(1	40)	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250		550	250		550	mV

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transo	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onic
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125	_	_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_ clk) frequency	—	100		125	100	_	125	MHz

Related Information

Arria V Device Overview

For more information about device ordering codes.

Receiver

Table 2-24: Receiver Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol Description	Conditions	Min	Тур	Max	Min	Тур	Max	
Supported I/O Standards	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS							
Data rate (Standard PCS) (143), (144)	—	600		9900	600	_	8800	Mbps
Data rate (10G PCS) (143), (144)	_	600		12500	600	_	10312.5	Mbps
Absolute $\mathrm{V}_{\mathrm{MAX}}$ for a receiver pin $^{(145)}$	—			1.2		—	1.2	V
Absolute V_{MIN} for a receiver pin	_	-0.4	_		-0.4		_	V

⁽¹⁴³⁾ The line data rate may be limited by PCS-FPGA interface speed grade.

⁽¹⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

⁽¹⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Mode ⁽¹⁶⁴⁾ Transceiver Speed Grade	Transceiver	PMA Width	20	20	16	16	10	10	8	8
	PCS/Core Width	40	20	32	16	20	10	16	8	
Degister	2	C3, I3L core speed grade	9.9	9	7.92	7.2	4.9	4.,5	3.92	3.6
icgistei	3	C4, I4 core speed grade	8.8	8.2	7.04	6.56	4.4	4.1	3.52	3.28

Related Information

Operating Conditions on page 2-1

10G PCS Data Rate

Table 2-31: 10G PCS Approximate Maximum Data Rate (Gbps) for Arria V GZ Devices

Mode ⁽¹⁶⁵⁾	Transceiver Speed Grade	PMA Width	64	40	40	40	32	32
		PCS Width	64	66/67	50	40	64/66/67	32
FIEO	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
FIFO -	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92
Pagistar	2	C3, I3L core speed grade	12.5	12.5	10.69	12.5	10.88	10.88
Kegister	3	C4, I4 core speed grade	10.3125	10.3125	10.69	10.3125	9.92	9.92

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

⁽¹⁶⁵⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	15	300	47	940
	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
V_{OD} differential peak to peak typical	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)

Altera Corporation

Figure 2-4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate ≥ 1.25 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification

Table 2-45: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate ≥ 1.25 Gbps

Jitter Free	quency (Hz)	Sinusoidal Jitter (UI)		
F1	10,000	25.000		
F2	17,565	25.000		
F3	1,493,000	0.350		
F4	50,000,000	0.350		

Programmable IOE Delay

Fast Model Slow Model Available Parameter (228) Min Offset (229) Unit Settings Industrial Commercial C3 C4 I3L 14 D1 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0 D2 32 0.230 0.244 0.459 0.503 0.456 0.500 ns D3 8 0 1.699 2.992 3.192 1.587 3.047 3.257 ns 0 D4 64 0.464 0.492 0.924 1.011 0.920 1.006 ns D5 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0.499 D6 32 0 0.244 0.503 0.229 0.458 0.456 ns

Table 2-66: IOE Programmable Delay for Arria V GZ Devices

Programmable Output Buffer Delay

Table 2-67: Programmable Output Buffer Delay for Arria V GZ Devices

You can set the programmable output buffer delay in the Quartus II software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

Symbol	Parameter	Typical	Unit
D _{outbuf}		0 (default)	ps
	Dising and/or falling adge delay	50	ps
	Kishig and/or failing edge delay	100	ps
		150	ps

⁽²²⁸⁾ You can set this value in the Quartus II software by selecting **D1**, **D2**, **D3**, **D4**, **D5**, and **D6** in the **Assignment Name** column of **Assignment Editor**.

⁽²²⁹⁾ Minimum offset does not include the intrinsic delay.