E·XFL

Intel - 5AGXMB5G4F40C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	19811
Number of Logic Elements/Cells	420000
Total RAM Bits	23625728
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb5g4f40c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1 17	1 20	1.23	V
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17 1.20	1.20	1.23	v
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1.17	1.20	1.23	V
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17	1.20	1.23	v
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.373	v

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol/Description	Condition	Transceiver Speed Grade 3			Unit
Symbol/Description	Condition	Min	Тур	Мах	Ont
t _{LTD_manual} ⁽⁵¹⁾	—	4	—	_	μs
t _{LTR_LTD_manual} ⁽⁵²⁾	_	15	—	_	μs
Programmable ppm detector ⁽⁵³⁾	_	±62.5, 100	ppm		
Run length	—	_	_	200	UI
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(54)}$ DC gain setting = 0 to 1	and DC Gain	for Arria V GX, GT 3.25 Gbps across Su	, SX, and ST Devices	ross Supported AC Gain and CTLE Response at ad DC Gain for Arria V ams.

Table 1-29: Transmitter Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit				
Symbol/Description	Condition	Min	Тур	Max			
Supported I/O standards	1.5 V PCML						
Data rate (6-Gbps transceiver)	—	611		6553.6	Mbps		
Data rate (10-Gbps transceiver)	_	0.611		10.3125	Gbps		
V _{OCM} (AC coupled)	—		650		mV		
V _{OCM} (DC coupled)	\leq 3.2 Gbps ⁽⁴⁸⁾	670	700	730	mV		

⁽⁵³⁾ The rate match FIFO supports only up to ± 300 ppm.

⁽⁵⁴⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

 $^{^{(51)}}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

⁽⁵²⁾ t_{LTR_LTD_manual} is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Table 1-31: Transceiver-FPGA Fabric Interface Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Мах	Unit	
Interface speed (PMA direct mode)	50	153.6 ⁽⁵⁶⁾ , 161 ⁽⁵⁷⁾	MHz	
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

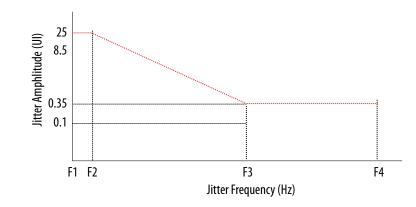
Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates ≤ 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36

⁽⁵⁶⁾ The maximum frequency when core transceiver local routing is selected.

⁽⁵⁷⁾ The maximum frequency when core transceiver network routing (GCLK, RCLK, or PCLK) is selected.

	Symbol	Condition		-I3, -C4		–I5, –C5			-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Onit
	TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps
	1003	Emulated Differential I/O Standards	_	_	300	_	_	300		_	300	ps
	True Differential I/O Standards - f _{HSDRDPA}	SERDES factor J =3 to $10^{(76)}$	150		1250	150	_	1250	150		1050	Mbps
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps
Receiver		SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps
	f _{HSDR} (data rate)	SERDES factor J = 1 to 2, uses DDR registers	(77)		(79)	(77)		(79)	(77)		(79)	Mbps
DPA Mode	DPA run length	_	—	_	10000	_	_	10000	_	_	10000	UI
Soft-CDR Mode	Soft-CDR ppm tolerance	_	_	_	300	_	_	300	_	_	300	±ppm
Non-DPA Mode	Sampling Window	_	_	_	300	_	_	300		_	300	ps


Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸³⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

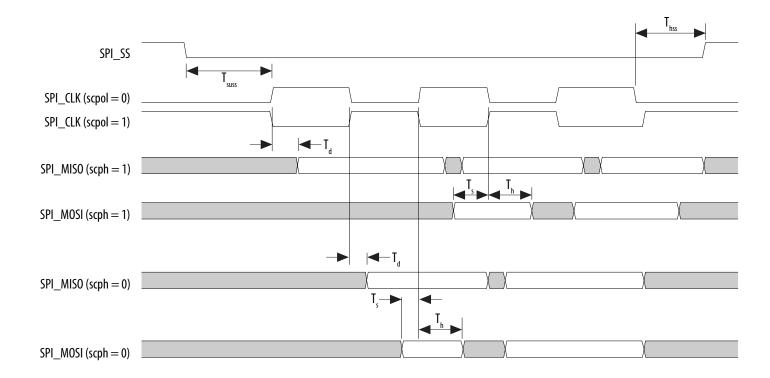


Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Figure 1-10: SPI Slave Timing Diagram

Related Information

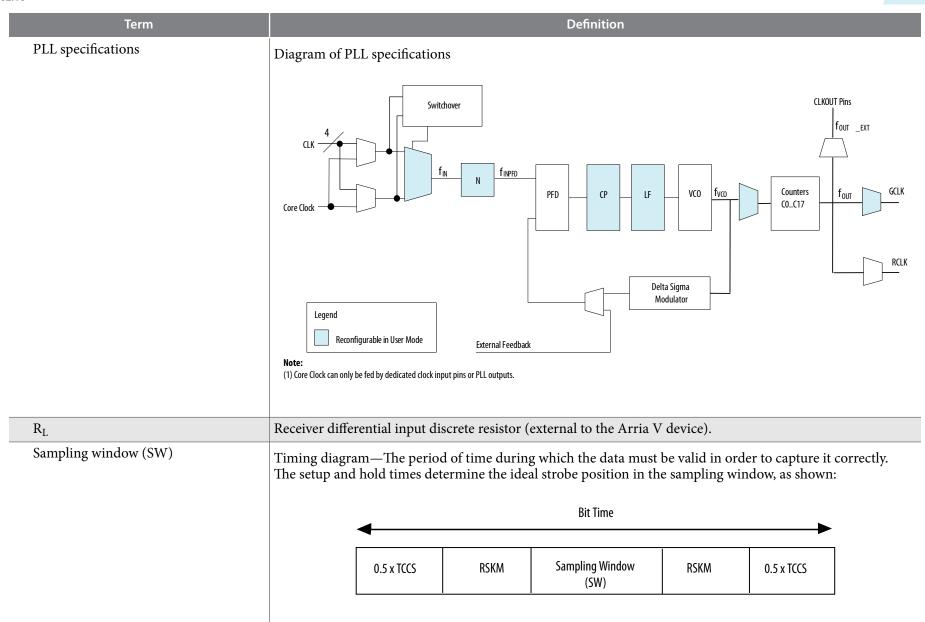
SPI Controller, Arria V Hard Processor System Technical Reference Manual

Provides more information about rx_sample_delay.

SD/MMC Timing Characteristics

Table 1-54: Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Arria V Devices

After power up or cold reset, the Boot ROM uses drvsel = 3 and smplsel = 0 to execute the code. At the same time, the SD/MMC controller enters the Identification Phase followed by the Data Phase. During this time, the value of interface output clock SDMMC_CLK_OUT changes from a maximum of 400 kHz (Identification Phase) up to a maximum of 12.5 MHz (Data Phase), depending on the internal reference clock SDMMC_CLK and the CSEL setting. The value of SDMMC_CLK is based on the external oscillator frequency and has a maximum value of 50 MHz.


Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A1	71,015,712	439,960
	A3	71,015,712	439,960
	A5	101,740,800	446,360
Arria V GX	A7	101,740,800	446,360
Allia V GA	B1	137,785,088	457,368
	B3	137,785,088	457,368
	B5	185,915,808	463,128
	B7	185,915,808	463,128
	C3	71,015,712	439,960
Arria V GT	C7	101,740,800	446,360
Allia v GI	D3	137,785,088	457,368
	D7	185,915,808	463,128
Arria V SX	B3	185,903,680	450,968
Allia v SA	B5	185,903,680	450,968
Arria V ST	D3	185,903,680	450,968
7111a V 51	D5	185,903,680	450,968

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

Arria V GX, GT, SX, and ST Device Datasheet

Date	Version	Changes
August 2013	3.5	Removed "Pending silicon characterization" note in Table 29.Updated Table 25.
August 2013	3.4	 Removed Preliminary tags for Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 9, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30, Table 31, Table 35, Table 36, Table 51, Table 53, Table 54, Table 55, Table 56, Table 57, Table 60, Table 62, and Table 64. Updated Table 1, Table 3, Table 11, Table 19, Table 20, Table 21, Table 22, Table 25, and Table 29.
June 2013	3.3	Updated Table 20, Table 21, Table 25, and Table 38.
May 2013	3.2	 Added Table 37. Updated Figure 8, Figure 9, Figure 20, Figure 22, and Figure 23. Updated Table 1, Table 5, Table 10, Table 13, Table 19, Table 20, Table 21, Table 23, Table 29, Table 39, Table 40, Table 46, Table 56, Table 57, Table 60, and Table 64. Updated industrial junction temperature range for -I3 speed grade in "PLL Specifications" section.
March 2013	3.1	 Added HPS reset information in the "HPS Specifications" section. Added Table 60. Updated Table 1, Table 3, Table 17, Table 20, Table 29, and Table 59. Updated Figure 21.

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
		0.82	0.85	0.88		
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCR_GXBR} ⁽¹²¹⁾	Receiver analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03	V	
	V _{CCT_GXBL} ⁽¹²¹⁾ Transmitter analog power supply (left side)	1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V	

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

I/O Standard		V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹³⁰⁾		0)	V _{OCM} (V) ⁽¹³⁰⁾						
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
RSDS (HIO) (133)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3		1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (134)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25		0.6	1	1.2	1.4
LVPECL	_		_	300			0.6	D _{MAX} ≤ 700 Mbps	1.8	_			_	_	_
(135), (136)			_	300			1	D _{MAX} > 700 Mbps	1.6	_	_			_	_

Related Information

Glossary on page 2-73

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

RL range: $90 \le RL \le 110 \Omega$. (130)

⁽¹³³⁾ For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

⁽¹³⁴⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

⁽¹³⁵⁾ LVPECL is only supported on dedicated clock input pins.

⁽¹³⁶⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2		Transce	Unit			
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onit
Reference Clock								
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCM and HCSL	IL, 1.4-V PC	CML, 1.5-V F	CML, 2.5-V	' PCML, Di	fferential LV	PECL, LVDS,
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS						
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40	_	710	40	_	710	MHz
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	_	100	_	710	100	_	710	MHz

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

AV-51002 2017.02.10

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transce	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Onic
	100 Hz	—	—	-70		—	-70	dBc/Hz
	1 kHz		_	-90			-90	dBc/Hz
Transmitter REFCLK Phase Noise (622 MHz) ⁽¹⁴¹⁾	10 kHz		_	-100			-100	dBc/Hz
	100 kHz		_	-110			-110	dBc/Hz
	≥1 MHz		_	-120			-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁴²⁾	10 kHz to 1.5 MHz (PCIe)		_	3			3	ps (rms)
R _{REF}	—		1800 ±1%			1800 ±1%		Ω

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transceiver Clocks

Table 2-23: Transceiver Clocks Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

 $^{^{(141)}}$ To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20 *log(f/622).

⁽¹⁴²⁾ To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz \times 100/f.

Symbol	Conditions	C3, I3L				Unit			
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic	
	SERDES factor J = 3 to 10 (182), (183)	(184)	_	1250	(184)	_	1050	Mbps	
True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor $J \ge 4$ LVDS TX with DPA (185), (186), (187), (188)	(184)		1600	(184)		1250	Mbps	
	SERDES factor J = 2, uses DDR Registers	(184)		(189)	(184)		(189)	Mbps	
	SERDES factor J = 1, uses SDR Register	(184)	_	(189)	(184)		(189)	Mbps	
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) (190)	SERDES factor J = 4 to 10 ⁽¹⁹¹⁾	(184)		840	(184)		840	Mbps	

⁽¹⁸²⁾ If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.

- ⁽¹⁸⁵⁾ Arria V GZ RX LVDS will need DPA. For Arria V GZ TX LVDS, the receiver side component must have DPA.
- Requires package skew compensation with PCB trace length. (186)
- (187)Do not mix single-ended I/O buffer within LVDS I/O bank.
- Chip-to-chip communication only with a maximum load of 5 pF. (188)
- ⁽¹⁸⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (fOUT) provided you can close the design timing and the signal integrity simulation is clean.
- ⁽¹⁹⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- ⁽¹⁹¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

⁽¹⁸³⁾ The F_{MAX} specification is based on the fast clock used for serial data. The interface F_{MAX} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽¹⁸⁴⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

AV-51002 2017.02.10

Symbol	Conditions		C3, I3I			Unit			
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	- Onic	
t _{x Jitter} - True Differential I/O	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	_	_	160	_	_	160	ps	
Standards	Total Jitter for Data Rate < 600 Mbps	_	_	0.1	_		0.1	UI	
t _{x Jitter} - Emulated Differential I/O Standards with Three	Total Jitter for Data Rate 600 Mbps - 1.25 Gbps	—	_	300	_		325	ps	
External Output Resistor Network	Total Jitter for Data Rate < 600 Mbps	_	_	0.2	_		0.25	UI	
t _{DUTY}	Transmitter output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	%	
	True Differential I/O Standards		_	200			200	ps	
t _{RISE} & t _{FALL}	Emulated Differential I/O Standards with three external output resistor networks	_	_	250	_	_	300	ps	
	True Differential I/O Standards			150			150	ps	
TCCS	Emulated Differential I/O Standards		—	300			300	ps	

Receiver High-Speed I/O Specifications

Table 2-41: Receiver High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Table 2-52: Worst-Case DCD on Arria V GZ I/O Pins

The DCD numbers do not cover the core clock network.

Symbol	С	3, I3L	C	Unit	
Symbol	Min	Мах	Min	Мах	Ont
Output Duty Cycle	45	55	45	55	%

Configuration Specification

POR Specifications

Table 2-53: Fast and Standard POR Delay Specification for Arria V GZ Devices

Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Arria V Devices" table in the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

POR Delay	Minimum (ms)	Maximum (ms)
Fast	4	12 (202)
Standard	100	300

Related Information

Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²⁰²⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times maximum$	—	—
		DCLK period		
t _{CD2UM} C	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × CLKUSR period) (209)	_	_

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57 ٠
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

Arria V GZ Device Datasheet

⁽²⁰⁸⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

⁽²⁰⁹⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

2-64 FPP Configuration Timing when DCLK to DATA[] > 1

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (215)	_	-

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁵⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Term	Definition
	Single-Ended Waveform Positive Channel (p) = V _{0H} V_{0D} Negative Channel (n) = V _{0L} VCM Ground
	Differential Waveform V_{0D} V_{0D} V_{0D} v_{0D} v_{0D}
f _{HSCLK}	Left and right PLL input clock frequency.
f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
f _{HSDRDPA}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.
J	High-speed I/O block—Deserialization factor (width of parallel data bus).

