E·XFL

Intel - 5AGXMB5G6F35C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	19811
Number of Logic Elements/Cells	420000
Total RAM Bits	23625728
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb5g6f35c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O Pin Leakage Current

Table 1-6: I/O Pin Leakage Current for Arria V Devices

Symbol	Description	Condition	Min	Тур	Max	Unit
II	Input pin	$V_{I} = 0 V$ to $V_{CCIOMAX}$	-30	—	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_{O} = 0 V$ to $V_{CCIOMAX}$	-30		30	μΑ

Bus Hold Specifications

Table 1-7: Bus Hold Parameters for Arria V Devices

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

			V _{CCIO} (V)												
Parameter	Symbol	Condition	1.	.2	1	.5	1	.8	2	.5	3.	.0	3	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max)	8	_	12		30	_	50		70		70		μΑ
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min)	-8	_	-12		-30	_	-50		-70	_	-70		μΑ
Bus-hold, low, overdrive current	I _{ODL}	$\begin{array}{c} 0 \ \mathrm{V} < \mathrm{V_{IN}} \\ < \mathrm{V_{CCIO}} \end{array}$		125	_	175	_	200		300		500	_	500	μΑ
Bus-hold, high, overdrive current	I _{ODH}	0 V <v<sub>IN <v<sub>CCIO</v<sub></v<sub>	_	-125	_	-175	_	-200		-300	_	-500	_	-500	μΑ

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Symbol	Description	V _{CCIO} (V)	Value	Unit
dR/dT		3.0	0.189	
		2.5	0.208	
	OCT variation with temperature without recalibration	1.8	0.266	
		1.5	0.273	%/°C
		1.35	0.200	
		1.25	0.200	
		1.2	0.317	

Pin Capacitance

Table 1-11: Pin Capacitance for Arria V Devices

Symbol	Description	Maximum	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on left/right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins	6	pF
C _{IOVREF}	Input capacitance on V _{REF} pins	48	pF

Hot Socketing

Table 1-12: Hot Socketing Specifications for Arria V Devices

Symbol	Description	Maximum	Unit
I _{IOPIN (DC)}	DC current per I/O pin	300	μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8(10)	mA
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100	mA

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

I/O Standard		V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
i/O Stanuaru	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max		
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$		
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V _{REF}	$V_{REF} + 0.04$		
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$		
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95		V _{CCIO} /2	—		
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9		V _{CCIO} /2	_		
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.53 \times V_{CCIO}$		V _{CCIO} /2	_		
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	_				

Tuble 1 15, Single Ended SSTE, 15TE, and 15OE / O hererence voltage Specifications for Anna v Devices

Symbol/Description	Condition	Transc	eiver Speed G	irade 4	Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Minimum differential eye opening at the receiver serial input pins ⁽³⁰⁾	_	100	_	_	100	_	_	mV
V _{ICM} (AC coupled)	—	_	0.7/0.75/ 0.8 ⁽³¹⁾			0.7/0.75/ 0.8 ⁽³¹⁾	—	mV
V _{ICM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
Differential on-chip	85- Ω setting		85			85	—	Ω
	100- Ω setting		100			100		Ω
termination resistors	120-Ω setting		120			120	—	Ω
	150-Ω setting		150			150	—	Ω
$t_{LTR}^{(33)}$	_			10		—	10	μs
$t_{LTD}^{(34)}$		4	_		4	_	—	μs
t _{LTD_manual} ⁽³⁵⁾		4			4	—		μs
$t_{LTR_LTD_manual}^{(36)}$		15			15	—	_	μs
Programmable ppm detector ⁽³⁷⁾	_		±62.5, 10	0, 125, 200, 2	50, 300, 500,	and 1000		ppm

⁽³⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(31) The AC coupled $V_{ICM} = 700 \text{ mV}$ for Arria V GX and SX in PCIe mode only. The AC coupled $V_{ICM} = 750 \text{ mV}$ for Arria V GT and ST in PCIe mode only.

⁽³²⁾ For standard protocol compliance, use AC coupling.

 $^{(33)}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{(34)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

 $^{(35)}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onic
Inter-transceiver block transmitter channel-to- channel skew ⁽³⁹⁾	×N PMA bonded mode			500		_	500	ps

Table 1-24: CMU PLL Specifications for Arria V GX and SX Devices

Symbol/Description	Transceiver S	peed Grade 4	Transceiver S	peed Grade 6	Unit	
	Min	Мах	Min	Мах	Unit	
Supported data range	611	6553.6	611	3125	Mbps	
fPLL supported data range	611	3125	611	3125	Mbps	

Table 1-25: Transceiver-FPGA Fabric Interface Specifications for Arria V GX and SX Devices

Symbol/Description	Transceiver Spee	ed Grade 4 and 6	Unit	
Symbol Description	Min	Max		
Interface speed (single-width mode)	25	187.5	MHz	
Interface speed (double-width mode)	25	163.84	MHz	

Related Information

- CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain on page 1-35
- CTLE Response at Data Rates \leq 3.25 Gbps across Supported AC Gain and DC Gain on page 1-36
- Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines Provides more information about the power supply connection for different data rates.

⁽³⁹⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

Typical TX V_{OD} Setting for Arria V Transceiver Channels with termination of 100 Ω

Table 1-32: Typical TX Vor	Setting for Arria V Tran	sceiver Channels with	termination of 100 Ω

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	6 ⁽⁵⁹⁾	120	34	680
	7 ⁽⁵⁹⁾	140	35	700
	8(59)	160	36	720
	9	180	37	740
	10	200	38	760
	11	220	39	780
	12	240	40	800
	13	260	41	820
	14	280	42	840
V _{OD} differential peak-to-peak typical	15	300	43	860
7 I	16	320	44	880
	17	340	45	900
	18	360	46	920
	19	380	47	940
	20	400	48	960
	21	420	49	980
	22	440	50	1000
	23	460	51	1020
	24	480	52	1040

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

⁽⁵⁹⁾ Only valid for data rates \leq 5 Gbps.

DSP Block Performance Specifications

|--|

		Performance	Unit		
	Mode	-I3, -C4	–I5, –C5	-C6	Onit
	Independent 9×9 multiplication	370	310	220	MHz
	Independent 18×19 multiplication	370	310	220	MHz
Modes using One DSP Block	Independent 18 × 25 multiplication	370	310	220	MHz
	Independent 20×24 multiplication	370	310	220	MHz
	Independent 27 \times 27 multiplication	310	250	200	MHz
	Two 18×19 multiplier adder mode	370	310	220	MHz
	18×18 multiplier added summed with 36- bit input	370	310	220	MHz
Modes using Two DSP Blocks	Complex 18×19 multiplication	370	310	220	MHz

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .

Arria V GX, GT, SX, and ST Device Datasheet

High-Speed I/O Specifications

Table 1-40: High-Speed I/O Specifications for Arria V Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block. When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

The Arria V devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 360 Mbps
- True mini-LVDS output standard with data rates of up to 400 Mbps

Symbol		Condition	–I3, –C4			–I5, –C5			-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (inp Differential I	out clock frequency) True /O Standards	Clock boost factor W = 1 to $40^{(72)}$	5		800	5		750	5	_	625	MHz
f _{HSCLK_in} (input clock frequency) Single-Ended I/O Standards ⁽⁷³⁾		Clock boost factor W = 1 to $40^{(72)}$	5		625	5		625	5		500	MHz
f _{HSCLK_in} (input clock frequency) Single-Ended I/O Standards ⁽⁷⁴⁾		Clock boost factor W = 1 to $40^{(72)}$	5	_	420	5	_	420	5	—	420	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	625(75)	5	_	625(75)	5		500 ⁽⁷⁵⁾	MHz
Transmitter	True Differential I/O Standards - f _{HSDR} (data rate)	SERDES factor J =3 to $10^{(76)}$	(77)		1250	(77)		1250	(77)		1050	Mbps

⁽⁷³⁾ This applies to DPA and soft-CDR modes only.

⁽⁷²⁾ Clock boost factor (W) is the ratio between the input data rate and the input clock rate.

⁽⁷⁴⁾ This applies to non-DPA mode only.

⁽⁷⁵⁾ This is achieved by using the LVDS clock network.

 $^{^{(76)}}$ The F_{max} specification is based on the fast clock used for serial data. The interface F_{max} is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

⁽⁷⁷⁾ The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

Figure 1-11: SD/MMC Timing Diagram

Related Information

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	USB CLK clock period	—	16.67	_	ns
T _d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	_	11	ns
T _{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2			ns
T _h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1			ns

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A1	71,015,712	439,960
	A3	71,015,712	439,960
	A5	101,740,800	446,360
Arria V CY	A7	101,740,800	446,360
	B1	137,785,088	457,368
	B3	137,785,088	457,368
	B5	185,915,808	463,128
	B7	185,915,808	463,128
	C3	71,015,712	439,960
Arria V CT	C7	101,740,800	446,360
Allia v GI	D3	137,785,088	457,368
	D7	185,915,808	463,128
Arria V SV	B3	185,903,680	450,968
Allia V SA	B5	185,903,680	450,968
Arria V ST	D3	185,903,680	450,968
Allia v SI	D5	185,903,680	450,968

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

1-94 Document Revision History

Term	Definition
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—Clock boost factor

Document Revision History

Date	Version	Changes
December 2016	2016.12.09	 Updated V_{ICM} (AC coupled) specifications in Receiver Specifications for Arria V GX and SX Devices table. Added maximum specification for T_d in Management Data Input/Output (MDIO) Timing Requirements for Arria V Devices table. Updated T_{init} specifications in the following tables: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices AS Timing Parameters for AS ×1 and ×4 Configurations in Arria V Devices PS Timing Parameters for Arria V Devices
June 2016	2016.06.10	 Changed pin capacitance to maximum values. Updated SPI Master Timing Requirements for Arria V Devices table. Added T_{su} and T_h specifications. Removed T_{dinmax} specifications. Updated SPI Master Timing Diagram. Updated T_{clk} spec from maximum to minimum in I²C Timing Requirements for Arria V Devices table.

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{SWING}	_{G(DC)} (V)	V _{X(AC)} (V)				V _{SWING(AC)} (V)
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2		V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_
SSTL-12 Class I, II	1.14	1.2	1.26	0.18		V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	$V_{CCIO}(V) \qquad V_{DIF(DC)}(V) \qquad V_{X(AC)}(V)$					V _{CN}	_{1(DC)} (V	V _{DIF(AC)} (V)					
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Мах
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68		0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transo	Unit		
Symbol/Description	Conditions	Transceiver Speed Grade 2 Transceiver Speed Grade 3 Min Typ Max Min Typ Max VCO post-divider 8000 $ 12500$ 8000 $ 10312.5$ L = 2 4000 $ 6600$ 4000 $ 6600$ L = $8^{(155)}$ 2000 $ 3300$ 2000 $ 3300$ $ 1$ $ 10$ $ 10$						
	VCO post-divider L = 2	8000		12500	8000	_	10312.5	Mbps
Supported data rate range	L = 4	4000	_	6600	4000	_	6600	Mbps
	$L = 8^{(155)}$	2000	_	3300	2000	_	3300	Mbps
t _{pll_powerdown} ⁽¹⁵⁶⁾	_	1	—	_	1	_		μs
t _{pll_lock} ⁽¹⁵⁷⁾	_	_	_	10		_	10	μs

Related Information

- Arria V Device Overview For more information about device ordering codes.
- Transceiver Clocking in Arria V Devices For more information about clocking ATX PLLs.
- **Dynamic Reconfiguration in Arria V Devices** For more information about reconfiguring ATX PLLs.

Fractional PLL

Table 2-28: Fractional PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

⁽¹⁵⁵⁾ This clock can be further divided by central or local clock dividers making it possible to use ATX PLL for data rates < 1 Gbps. For more information about ATX PLLs, refer to the Transceiver Clocking in Arria V Devices chapter and the Dynamic Reconfiguration in Arria V Devices chapter.

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width.

⁽¹⁵⁷⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Symbol	Parameter	Min	Тур	Max	Unit
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	—
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Related Information

- Duty Cycle Distortion (DCD) Specifications on page 2-56
- DLL Range Specifications on page 2-53

DSP Block Specifications

Table 2-35: DSP Block Performance Specifications for Arria V GZ Devices

Mada	Performar	nce		Unit	
Mode	C3, I3L	C4	14	Onit	
Modes using One DSP Block					
Three 9 × 9	480	42	20	MHz	
One 18 × 18	480	420	400	MHz	
Two partial 18×18 (or 16×16)	480	420 400		MHz	
One 27 × 27	400	350		MHz	
One 36 × 18	400	350		MHz	
One sum of two 18×18 (One sum of two 16×16)	400	350		MHz	
One sum of square	400	350		MHz	
One 18×18 plus $36 (a \times b) + c$	400	350		MHz	
Modes using Two DSP Blocks					
Three 18 × 18	400	350 N		MHz	
One sum of four 18×18	380	30	00	MHz	

Momony	Resour		rces Used	Performance				Unit
wieniory	Mode	ALUTs	Memory	C3	C4	I3L	14	
	Single-port, all supported widths		1	650	550	500	450	MHz
	Simple dual-port, all supported widths	0	1	650	550	500	450	MHz
Simple du option set	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz
	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz
	True dual port, all supported widths	0	1	650	550	500	450	MHz
	ROM, all supported widths	0	1	650	550	500	450	MHz

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Мах	Unit
I _{bias} , diode source current	8		200	μΑ
V _{bias,} voltage across diode	0.3		0.9	V
Series resistance		_	< 1	Ω

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R_S/R_T calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Table 2-57: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (210)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	-	1,506 (211)	μs
t _{CF2CK} ⁽²¹²⁾	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} ⁽²¹²⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽²¹³⁾	_	S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}	_	S
£	DCLK frequency (FPP ×8/×16)	-	125	MHz
IMAX	DCLK frequency (FPP ×32)	—	100	MHz
t _R	Input rise time	-	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁴⁾	175	437	μs

⁽²¹⁰⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹¹⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{(212)}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

 $^{(213)}$ N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.

⁽²¹⁴⁾ The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

Arria V GZ Device Datasheet

Altera Corporation

Active Serial Configuration Timing

Figure 2-9: AS Configuration Timing

Timing waveform for the active serial (AS) x1 mode and AS x4 mode configuration timing.

Notes:

1. If you are using AS ×4 mode, this signal represents the AS_DATA[3..0] and ERCQ sends in 4-bits of data for each DCLKcycle.

2. The initialization clock can be from internal oscillator or CLKUSR pin

3. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE ges low.

Table 2-58: AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices

The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

t_{CF2CD}, t_{CF2ST0}, t_{CFG}, t_{STATUS}, and t_{CF2ST1} timing parameters are identical to the timing parameters for PS mode listed in the "PS Timing Parameters for Arria V GZ Devices" table.

Programmable IOE Delay

Fast Model Slow Model Available Parameter (228) Min Offset (229) Unit Settings Industrial Commercial C3 C4 I3L 14 D1 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0 D2 32 0.230 0.244 0.459 0.503 0.456 0.500 ns D3 8 0 1.699 2.992 3.192 1.587 3.047 3.257 ns 0 D4 64 0.464 0.492 0.924 1.011 0.920 1.006 ns D5 64 0 0.464 0.493 0.924 1.011 0.921 1.006 ns 0.499 D6 32 0 0.244 0.503 0.229 0.458 0.456 ns

Table 2-66: IOE Programmable Delay for Arria V GZ Devices

Programmable Output Buffer Delay

Table 2-67: Programmable Output Buffer Delay for Arria V GZ Devices

You can set the programmable output buffer delay in the Quartus II software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

Symbol	Parameter	Typical	Unit
D _{OUTBUF}		0 (default)	ps
	Rising and/or falling edge delay	50	ps
		100	ps
		150	ps

⁽²²⁸⁾ You can set this value in the Quartus II software by selecting **D1**, **D2**, **D3**, **D4**, **D5**, and **D6** in the **Assignment Name** column of **Assignment Editor**.

⁽²²⁹⁾ Minimum offset does not include the intrinsic delay.

Term	Definition
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—clock boost factor

Document Revision History

Date	Version	Changes
February 2017	2017.02.10	 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1" table. Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK to DATA[] Ratio is 1" table.
		 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices" table. Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Arria V GZ Devices" table. Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices" table.

