
Intel - 5AGXMB7G4F35I5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	544
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA Exposed Pad
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb7g4f35i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS auxiliary power supply	_	2.375	2.5	2.625	V

Related Information

Recommended Operating Conditions on page 1-4 Provides the steady-state voltage values for the FPGA portion of the device.

DC Characteristics

Supply Current and Power Consumption

Altera offers two ways to estimate power for your design-the Excel-based Early Power Estimator (EPE) and the Quartus® Prime PowerPlay Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus Prime PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-androute. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide Provides more information about power estimation tools.
- PowerPlay Power Analysis chapter, Quartus Prime Handbook Provides more information about power estimation tools.

Altera Corporation

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Sumbol/Decovintion	Condition	Transc	eiver Speed G	irade 4	Transc	eiver Speed G	Unit	
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Minimum differential eye opening at the receiver serial input pins ⁽³⁰⁾	_	100	_	_	100	_	_	mV
V _{ICM} (AC coupled)	_	_	0.7/0.75/ 0.8 ⁽³¹⁾	_	_	0.7/0.75/ 0.8 ⁽³¹⁾		mV
V _{ICM} (DC coupled)	$\leq 3.2 \text{Gbps}^{(32)}$	670	700	730	670	700	730	mV
	85- Ω setting		85	—		85	_	Ω
Differential on-chip	100- Ω setting		100	_		100		Ω
termination resistors	120-Ω setting		120	—		120		Ω
	150-Ω setting		150	_		150		Ω
t _{LTR} ⁽³³⁾		_	_	10	_	_	10	μs
$t_{LTD}^{(34)}$	_	4	_	_	4	_	_	μs
t _{LTD_manual} ⁽³⁵⁾	_	4	_	—	4	_	_	μs
t _{LTR_LTD_manual} ⁽³⁶⁾		15	_		15			μs
Programmable ppm detector ⁽³⁷⁾	_		±62.5, 100, 125, 200, 250, 300, 500, and 1000					

⁽³⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(31) The AC coupled $V_{ICM} = 700 \text{ mV}$ for Arria V GX and SX in PCIe mode only. The AC coupled $V_{ICM} = 750 \text{ mV}$ for Arria V GT and ST in PCIe mode only.

⁽³²⁾ For standard protocol compliance, use AC coupling.

 $^{(33)}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

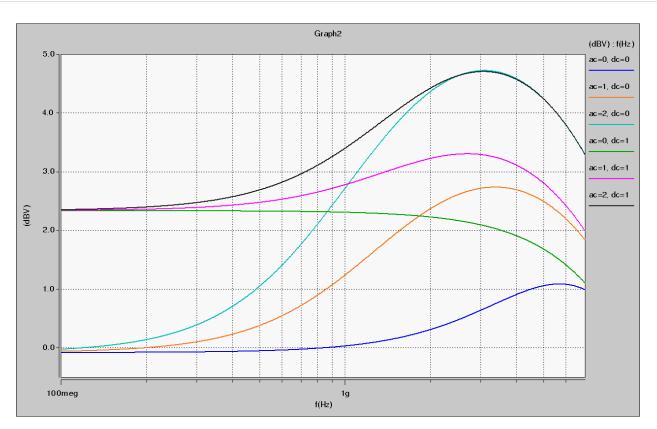
 $^{(34)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

 $^{(35)}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Max	Ont
	85-Ω setting	—	85	—	Ω
Differential on-chip termination	100- Ω setting		100		Ω
resistors	120-Ω setting	—	120	—	Ω
	150-Ω setting		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps			15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode			180	ps
Inter-transceiver block transmitter channel-to-channel skew ⁽⁵⁵⁾	× <i>N</i> PMA bonded mode			500	ps

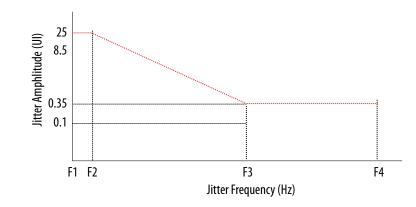
Table 1-30: CMU PLL Specifications for Arria V GT and ST Devices


Symbol/Description	Transceiver S	peed Grade 3	Unit
Symbol/Description	Min	Max	Onit
Supported data range	0.611	10.3125	Gbps
fPLL supported data range	611	3125	Mbps

⁽⁵⁵⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices


Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Parameter	Clock Network	Symbol	-I3,	-C4	–15,	-C5	-(6	Unit
Parameter		Symbol	Min	Max	Min	Max	Min	Max	Ont
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	6	3	9	0	9	4	ps

OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks			20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for R_S OCT/ R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of octusrclk clock cycles required for oct code to shift out		32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5	_	ns

HPS JTAG Timing Specifications

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹⁰⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹⁰⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹⁰⁾	ns

Table 1-62: HPS JTAG Timing Parameters and Values for Arria V Devices

Configuration Specifications

This section provides configuration specifications and timing for Arria V devices.

POR Specifications

Table 1-63: Fast and Standard POR Delay Specification for Arria V Devices

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽⁹¹⁾	ms

⁽⁹⁰⁾ A 1-ns adder is required for each V_{CCIO_HPS} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO_HPS} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

⁽⁹¹⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

AV-51002 2017.02.10

The Quartus Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

Related Information

Arria V I/O Timing Spreadsheet

Provides the Arria V Excel-based I/O timing spreadsheet.

Programmable IOE Delay

Parameter ⁽¹¹²	eter ⁽¹¹² Available Minimum		Fast I	Model	Slow Model					- Unit
)) Settings Offset ⁽¹¹³⁾	Offset ⁽¹¹³⁾	Industrial	Commercial	-C4	-C5	-C6	-13	-15	Unit
D1	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns
D3	8	0	1.763	1.795	2.999	3.496	3.571	3.031	3.643	ns
D4	32	0	0.508	0.518	0.869	1.063	1.063	1.063	1.057	ns
D5	32	0	0.508	0.517	0.870	1.063	1.063	0.872	1.057	ns

Table 1-76: I/O element (IOE) Programmable Delay for Arria V Devices

Programmable Output Buffer Delay

Table 1-77: Programmable Output Buffer Delay for Arria V Devices

This table lists the delay chain settings that control the rising and falling edge delays of the output buffer.

You can set the programmable output buffer delay in the Quartus Prime software by setting the **Output Buffer Delay Control** assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the **Output Buffer Delay** assignment.

⁽¹¹²⁾ You can set this value in the Quartus Prime software by selecting **D1**, **D3**, **D4**, and **D5** in the **Assignment Name** column of **Assignment Editor**.

⁽¹¹³⁾ Minimum offset does not include the intrinsic delay.

1-98 Document Revision History

Date	Version	Changes
July 2014	3.8	 Added a note in Table 3, Table 4, and Table 5: The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements. Updated V_{CC_HPS} specification in Table 5. Added a note in Table 19: Differential inputs are powered by V_{CCPD} which requires 2.5 V. Updated "Minimum differential eye opening at the receiver serial input pins" specification in Table 20 and Table 21. Updated description in "HPS PLL Specifications" section. Updated VCO range maximum specification in Table 39. Updated T_h and T_h specifications in Table 45. Added T_h specification in Table 47 and Figure 13. Updated a note in Figure 20, Figure 21, and Figure 23 as follows: Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. Removed "Remote update only in AS mode" specification in Table 58. Added DCLK device initialization clock source specification in Table 60. Added description in "Configuration Files" section: The IOCSR .rbf size is specifically for the Configuration via Protocol (CvP) feature. Removed f_{MAX_RU_CLK} specification in Table 63.
February 2014	3.7	 Updated V_{CCRSTCLK_HPS} maximum specification in Table 1. Added V_{CC_AUX_SHARED} specification in Table 1.
December 2013	3.6	 Added "HPS PLL Specifications". Added Table 24, Table 39, and Table 40. Updated Table 1, Table 3, Table 5, Table 19, Table 20, Table 21, Table 38, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, Table 51, Table 55, Table 56, and Table 59. Updated Figure 7, Figure 13, Figure 15, Figure 16, and Figure 19. Removed table: GPIO Pulse Width for Arria V Devices.

Symbol	Symbol Description		Resistance	Unit		
Symbol	Description	Conditions	C3, I3L	C4, I4	Onic	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V_{CCIO} = 1.8 and 1.5 V	±40	±40	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2 V$	±50	±50	%	
100-Ω R _D	Internal differential termination (100- Ω setting)	$V_{CCIO} = 2.5 V$	±25	±25	%	

Figure 2-1: OCT Variation Without Re-Calibration for Arria V GZ Devices

$$\mathbf{R}_{\text{OCT}} = \mathbf{R}_{\text{SCAL}} \left(1 + \left(\frac{dR}{dT} \times \bigtriangleup T \right) \pm \left(\frac{dR}{dV} \times \bigtriangleup V \right) \right)$$

Notes:

1. The R_{oct} value shows the range of OCT resistance with the variation of temperature and V_{ccio} . 2. R_{scAL} is the OCT resistance value at power-up. 3. ΔT is the variation of temperature with respect to the temperature at power-up. 4. ΔV is the variation of voltage with respect to the V_{ccio} at power-up. 5. dR/dT is the percentage change of R_{scAL} with temperature. 6. dR/dV is the percentage change of R_{scAL} with voltage

6. dR/dV is the percentage change of R_{SCAL} with voltage.

Table 2-12: OCT Variation after Power-Up Calibration for Arria V GZ Devices

Valid for a V_{CCIO} range of \pm 5% and a temperature range of 0° to 85°C.

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	—	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration $^{(146)}$	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$	_	_	1.8	_	_	1.8	V
	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$	—		2.4	_	_	2.4	V
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85	_	_	85	_		mV
	85– Ω setting		85 ± 30%	_	_	85 ± 30%		Ω
Differential on-chip termination	100– Ω setting		100 ± 30%		_	100 ± 30%		Ω
resistors	120– Ω setting	_	120 ± 30%		—	120 ± 30%		Ω
	150– Ω setting	_	150 ± 30%		_	150 ± 30%		Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	ed Grade 3	- Unit	
Symbol/Description		Min	Тур	Мах	Min	Тур	Мах	
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	_	600	_	_	600	_	mV
V _{ICM} (AC and DC coupled)	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth	_	600		_	600	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth		700	_		700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth		700	_		700	_	mV
t _{LTR} ⁽¹⁴⁹⁾	—	_	_	10	_	_	10	μs
t _{LTD} ⁽¹⁵⁰⁾	_	4			4	_		μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	_		4	_		μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	_	15			15	_		μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16		_	16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2			Transceiver Speed Grade 3			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit	
	DC gain setting = 0		0	_	—	0	_	dB	
	DC gain setting = 1	—	2	_		2	_	dB	
Programmable DC gain	DC gain setting = 2		4	_		4		dB	
	DC gain setting = 3	—	6	_	—	6	_	dB	
	DC gain setting = 4	—	8	—	_	8	—	dB	

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter

Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transceiver Speed Grade 2					Transceiver Speed Grade 3			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Unit		
Supported I/O Standards	1.4-V and 1.5-V PCML									
Data rate (Standard PCS)	—	600	_	9900	600	_	8800	Mbps		
Data rate (10G PCS)	_	600		12500	600	_	10312.5	Mbps		

2-32 Standard PCS Data Rate

	ATX PLL			CMU PLL ⁽¹⁶¹⁾			fPLL		
Clock Network	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span
xN (PCIe)	_	8.0	8	_	5.0	8	_	_	_
xN (Native PHY IP)	8.0	8.0 8.01 to 9.8304	Up to 13 channels above and below PLL Up to 7 channels above and below PLL	7.99	7.99	Up to 13 channels above and below PLL	3.125	3.125	Up to 13 channels above and below PLL

Standard PCS Data Rate

Table 2-30: Standard PCS Approximate Maximum Date Rate (Gbps) for Arria V GZ Devices

The maximum data rate is also constrained by the transceiver speed grade. Refer to the "Commercial and Industrial Speed Grade Offering for Arria V GZ Devices" table for the transceiver speed grade.

Mode ⁽¹⁶⁴⁾ Transceiver Speed Grade 2 FIFO		PMA Width	20	20	16	16	10	10	8	8
	PCS/Core Width	40	20	32	16	20	10	16	8	
	2	C3, I3L core speed grade	9.9	9	7.84	7.2	5.3	4.7	4.24	3.76
	3	C4, I4 core speed grade	8.8	8.2	7.2	6.56	4.8	4.3	3.84	3.44

⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶⁴⁾ The Phase Compensation FIFO can be configured in FIFO mode or register mode. In the FIFO mode, the pointers are not fixed, and the latency can vary. In the register mode the pointers are fixed for low latency.

Typical VOD Settings

The tolerance is +/-20% for all VOD settings except for settings 2 and below.										
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)						
	0 (166)	0	32	640						
	1 ⁽¹⁶⁶⁾	20	33	660						
	2(166)	40	34	680						
	3(166)	60	35	700						
	4 ⁽¹⁶⁶⁾	80	36	720						
	5 ⁽¹⁶⁶⁾	100	37	740						
	6	120	38	760						
$ m V_{OD}$ differential peak to peak typical	7	140	39	780						
	8	160	40	800						
	9	180	41	820						
	10	200	42	840						
	11	220	43	860						
	12	240	44	880						
	13	260	45	900						
	14	280	46	920						

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

Memory	Mode	Resou	rces Used		Unit			
wentory	imoue	ALUTs	Memory	C3	C4	I3L	14	
	Single-port, all supported widths	0	1	650	550	500	450	MHz
	Simple dual-port, all supported widths		1	650	550	500	450	MHz
	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	455	400	455	400	MHz
M20K Block	Simple dual-port with ECC enabled, 512×32	0	1	400	350	400	350	MHz
Simple dual-port with EC	Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32	0	1	500	450	500	450	MHz
	True dual port, all supported widths	0	1	650	550	500	450	MHz
	ROM, all supported widths	0	1	650	550	500	450	MHz

Temperature Sensing Diode Specifications

Table 2-37: Internal Temperature Sensing Diode Specification

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40°C to 100°C	±8°C	No	1 MHz, 500 kHz	< 100 ms	8 bits	8 bits

Table 2-38: External Temperature Sensing Diode Specifications for Arria V GZ Devices

Description	Min	Тур	Max	Unit
I _{bias} , diode source current	8	—	200	μΑ
V _{bias,} voltage across diode	0.3	_	0.9	V
Series resistance			< 1	Ω

2-44 Periphery Performance

Description	Min	Тур	Max	Unit
Diode ideality factor	1.006	1.008	1.010	—

Periphery Performance

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

Note: The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

High-Speed Clock Specifications

Table 2-39: High-Speed Clock Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

Arria V GZ devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 230 Mbps
- True mini-LVDS output standard with data rates of up to 340 Mbps

JTAG Configuration Specifications

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 (203)		ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output		11 (204)	ns
t_{JPZX}	JTAG port high impedance to valid output		14 (204)	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14 (204)	ns

Fast Passive Parallel (FPP) Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Arria V GZ Device Datasheet

Altera Corporation

⁽²⁰³⁾ The minimum TCK clock period is 167 ns if VCCBAT is within the range 1.2V-1.5V when you perform the volatile key programming.

⁽²⁰⁴⁾ A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{IPCO} = 12$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2-8: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1,

t_{CF2ST1} tcfg ;↔ nCONFIG ŤĊF2CK nSTATUS (3) 🕳 tstatus tCF2ST0 CONF_DONE (4) TCL tCH tsT2CK ŤĊF2CD (8) DCLK (6) (7) 1 2 ••• r 2 ••• r 1 \mathbf{D} (5) tCLK DATA[31..0] (8) Word 0 Word User Mode Word 3 • • • Word (n-1) tDH tDH tpsy High-Z User I/O User Mode INIT DONE (9) tCD2UM

Timing when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. To find out the DCLK-to-DATA[] ratio for your system, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 2. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 3. After power-up, the Arria V GZ device holds nSTATUS low for the time as specified by the POR delay.
- 4. After power-up, before and during configuration, CONF_DONE is low.
- 5. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 6. "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 7. If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[31.0] pins prior to sending the first DCLK rising edge.
- 8. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 9. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

2-70 Remote System Upgrades Circuitry Timing Specification

Table 2-62: Uncompressed .rbf Sizes for Arria V GZ Devices

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits) (223)
	E1	137,598,880	562,208
Arria V GZ	E3	137,598,880	562,208
	E5	213,798,880	561,760
	E7	213,798,880	561,760

Table 2-63: Minimum Configuration Time Estimation for Arria V GZ Devices

Variant	Member Code	Active Serial ⁽²²⁴⁾		Fast Passive Parallel ⁽²²⁵⁾			
		Width	DCLK (MHz)	Min Config Time (ms)	Width	DCLK (MHz)	Min Config Time (ms)
Arria V GZ	E1	4	100	344	32	100	43
	E3	4	100	344	32	100	43
	E5	4	100	534	32	100	67
	E7	4	100	534	32	100	67

Remote System Upgrades Circuitry Timing Specification

Table 2-64: Remote System Upgrade Circuitry Timing Specifications

Parameter	Minimum	Maximum	Unit
t _{RU_nCONFIG} ⁽²²⁶⁾	250	_	ns
t _{RU_nRSTIMER} ⁽²²⁷⁾	250	_	ns

⁽²²³⁾ The IOCSR **.rbf** size is specifically for the Configuration via Protocol (CvP) feature.

⁽²²⁴⁾ DCLK frequency of 100 MHz using external CLKUSR.

(225) Max FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

