
E·XFL

Intel - 5AGXMB7G6F40C6N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	23780
Number of Logic Elements/Cells	504000
Total RAM Bits	27695104
Number of I/O	704
Number of Gates	-
Voltage - Supply	1.07V ~ 1.13V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA
Supplier Device Package	1517-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agxmb7g6f40c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Arria V GX, GT, SX, and ST Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Arria® V devices.

Arria V devices are offered in commercial and industrial grades. Commercial devices are offered in -C4 (fastest), -C5, and -C6 speed grades. Industrial grade devices are offered in the -I3 and -I5 speed grades.

Related Information

Arria V Device Overview

Provides more information about the densities and packages of devices in the Arria V family.

Electrical Characteristics

The following sections describe the operating conditions and power consumption of Arria V devices.

Operating Conditions

Arria V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Arria V devices, you must consider the operating requirements described in this section.

Absolute Maximum Ratings

This section defines the maximum operating conditions for Arria V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

[©] 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Symbol/Description	Condition	Trans	sceiver Speed Gr	ade 4	Transc	Unit		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30		33	30	_	33	kHz
Spread-spectrum downspread	PCIe	—	0 to -0.5%	_		0 to -0.5%	—	
On-chip termination resistors	_	_	100		_	100	—	Ω
V _{ICM} (AC coupled)		—	1.1/1.15 ⁽²⁶⁾		_	1.1/1.15 ⁽²⁶⁾	—	V
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz	—	_	-50	_	—	-50	dBc/Hz
	100 Hz	_	_	-80	_	—	-80	dBc/Hz
Transmitter REFCLK phase	1 KHz	—		-110	_	—	-110	dBc/Hz
noise ⁽²⁷⁾	10 KHz	_	_	-120	_	_	-120	dBc/Hz
	100 KHz	—	_	-120	_	—	-120	dBc/Hz
-	≥1 MHz			-130	_	_	-130	dBc/Hz
R _{REF}	—	—	2000 ±1%		—	2000 ±1%	_	Ω

⁽²⁶⁾ For data rate \leq 3.2 Gbps, connect V_{CCR_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate > 3.2 Gbps, connect V_{CCR_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

⁽²⁷⁾ The transmitter REFCLK phase jitter is 30 ps p-p at bit error rate (BER) 10^{-12} .

AV-51002 2017.02.10

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Ont
Run length	—	—	_	200	_	_	200	UI
Programmable equaliza- tion AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Gain and Response	l DC Gain for at Data Rates	se at Data Rat Arria V GX, s ≤ 3.25 Gbps V GX, GT, S2	GT, SX, and across Supp	ST Devices a orted AC Gai	nd CTLE n and DC	dB

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	dition Transceiver Speed Grade 4		Grade 4	Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611	_	6553.6	611		3125	Mbps
V _{OCM} (AC coupled)			650	_		650		mV
V _{OCM} (DC coupled)	\leq 3.2Gbps ⁽³²⁾	670	700	730	670	700	730	mV
	85- Ω setting	—	85	_		85		Ω
Differential on-chip	100- Ω setting	—	100	_		100		Ω
termination resistors	120- Ω setting	—	120	_		120		Ω
	150-Ω setting	—	150	_		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps		_	15			15	ps
Intra-transceiver block transmitter channel-to- channel skew	×6 PMA bonded mode			180			180	ps

⁽³⁷⁾ The rate match FIFO supports only up to ±300 parts per million (ppm).
 ⁽³⁸⁾ The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

Symbol/Description	Condition	Т	ransceiver Speed Gra	Transceiver Speed Grade 3				
Symbol/Description	Condition	Min	Тур	Мах	Unit			
Data rate (10-Gbps transceiver) ⁽⁴⁴⁾	_	0.611	—	10.3125	Gbps			
Absolute V_{MAX} for a receiver pin ⁽⁴⁵⁾	_		_	1.2	V			
Absolute $\mathrm{V}_{\mathrm{MIN}}$ for a receiver pin	_	-0.4	_	_	V			
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	—	—	_	1.6	V			
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) after device configuration	_	_	_	2.2	V			
Minimum differential eye opening at the receiver serial input pins ⁽⁴⁶⁾	_	100			mV			
V _{ICM} (AC coupled)	_	_	750 ⁽⁴⁷⁾ /800		mV			
V _{ICM} (DC coupled)	$\leq 3.2 \mathrm{Gbps}^{(48)}$	670	700	730	mV			
	85- Ω setting		85		Ω			
Differential on-chip termination	100-Ω setting		100		Ω			
resistors	120-Ω setting		120		Ω			
	150-Ω setting		150		Ω			
t _{LTR} ⁽⁴⁹⁾	_	_	_	10	μs			
t _{LTD} ⁽⁵⁰⁾	_	4			μs			

⁽⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

⁽⁴⁶⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

 $^{^{(47)}}$ The AC coupled $V_{\rm ICM}$ is 750 mV for PCIe mode only.

⁽⁴⁸⁾ For standard protocol compliance, use AC coupling.

 $^{^{(49)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

⁽⁵⁰⁾ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st								
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	_	7.92	4.86	4	3.38	2.87	2.46	dB
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	_	10.2	6.09	5.01	4.23	3.61	—	dB
12	_	11.56	6.74	5.51	4.68	3.97	—	dB
13	_	12.9	7.44	6.1	5.12	4.36	—	dB
14	_	14.44	8.12	6.64	5.57	4.76	_	dB
15	_	_	8.87	7.21	6.06	5.14	—	dB

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-44	PLL Specifications
------	--------------------

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	5	_	800 ⁽⁶¹⁾	MHz
f _{IN}	Input clock frequency	-4 speed grade	5	_	800 ⁽⁶¹⁾	MHz
IIN	input clock frequency	-5 speed grade	5	_	750 ⁽⁶¹⁾	MHz
		-6 speed grade	5	_	625 ⁽⁶¹⁾	MHz
f _{INPFD}	Integer input clock frequency to the phase frequency detector (PFD)		5	_	325	MHz
f _{FINPFD}	Fractional input clock frequency to the PFD	_	50	_	160	MHz
		-3 speed grade	600	_	1600	MHz
f _{VCO} ⁽⁶²⁾	PLL voltage-controlled oscillator	-4 speed grade	600	_	1600	MHz
IVCO	(VCO) operating range	-5 speed grade	600	_	1600	MHz
		-6 speed grade	600	_	1300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	_	40	_	60	%
		-3 speed grade	_	_	500 ⁽⁶³⁾	MHz
f	Output frequency for internal global or	-4 speed grade	_	_	500 ⁽⁶³⁾	MHz
f _{OUT}	regional clock	-5 speed grade	_	-	500 ⁽⁶³⁾	MHz
		-6 speed grade	_	_	400 ⁽⁶³⁾	MHz

⁽⁶¹⁾ This specification is limited in the Quartus Prime software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.

⁽⁶²⁾ The VCO frequency reported by the Quartus Prime software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

⁽⁶³⁾ This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

The SD/MMC interface calibration support will be available in a future release of the preloader through the SoC EDS software update.

Symbol	Description	Min	Мах	Unit
	SDMMC_CLK clock period (Identification mode)	20	_	ns
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$\frac{(T_{sdmmc_clk} \times drvsel)/2}{-1.23}$	$\begin{array}{c} (\mathrm{T}_{sdmmc_clk} \times \texttt{drvsel})/2 \\ + 1.69^{\ (87)} \end{array}$	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_clk} \times smplsel)/2^{(88)}$		ns
T _h	Input hold time	$\frac{(T_{sdmmc_clk} \times \texttt{smplsel})}{2^{(88)}}$	—	ns

⁽⁸⁷⁾ drvsel is the drive clock phase shift select value.

⁽⁸⁸⁾ smplsel is the sample clock phase shift select value.

Related Information

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
DCLK frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing

Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.

⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

Initialization

Table 1-71: Initialization Clock Source Option and the Maximum Frequency for Arria V Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP 12.5		
CLKUSR ⁽¹⁰⁷⁾	PS and FPP	125	Т
CLAUSR	AS	100	1 init
DCLK	PS and FPP	125	

Configuration Files

Table 1-72: Uncompressed .rbf Sizes for Arria V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus Prime software. However, for a specific version of the Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁰⁷⁾ To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus Prime software from the **General** panel of the **Device and Pin Options** dialog box.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
VI	DC input voltage	—	-0.5	_	3.6	V
Vo	Output voltage		0		V _{CCIO}	V
TI	Operating junction temperature	Commercial	0		85	°C
Ij		Industrial	-40		100	°C
t	Power supply ramp time	Standard POR	200 µs	_	100 ms	_
t _{RAMP}		Fast POR	200 µs	—	4 ms	—

Recommended Transceiver Power Supply Operating Conditions

Table 2-6: Recommended Transceiver Power Supply Operating Conditions for Arria V GZ Devices

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit
V _{CCA_GXBL} (119), (120)	Transceiver channel PLL power supply (left side)	2.85	3.0	3.15	V
	Transceiver channel FLL power supply (left side)	2.375	2.5	2.625	v
V _{CCA} _	Transceiver channel DLL nevver supply (right eide)	2.85	3.0	3.15	V
V _{CCA} GXBR ⁽¹¹⁹⁾ , ⁽¹²⁰⁾	Transceiver channel PLL power supply (right side)	2.375	2.5	2.625	
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	0.82	0.85	0.88	V
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	0.82	0.85	0.88	V

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁰⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽¹¹⁹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

Bus Hold Specifications

Table 2-9: Bus Hold Parameters for Arria V GZ Devices

							Vc	CIO					
Parameter	Symbol	Conditions	1.2	2 V	1.5	5 V	1.8	8 V	2.5	5 V	3.() V	Unit
			Min	Max									
Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (maximum)	22.5		25.0	_	30.0	_	50.0		70.0		μΑ
High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (minimum)	-22.5		-25.0		-30.0	_	-50.0		-70.0	_	μΑ
Low overdrive current	I _{ODL}	$\begin{array}{c} 0\mathrm{V} < \mathrm{V_{IN}} < \\ \mathrm{V_{CCIO}} \end{array}$		120	_	160		200		300	_	500	μΑ
High overdrive current	I _{ODH}	$0V < V_{IN} < V_{CCIO}$		-120		-160	_	-200		-300	_	-500	μΑ
Bus-hold trip point	V _{TRIP}	_	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

On-Chip Termination (OCT) Specifications

If you enable OCT calibration, calibration is automatically performed at power-up for I/Os connected to the calibration block.

Table 2-10: OCT Calibration Accuracy Specifications for Arria V GZ Devices

OCT calibration accuracy is valid at the time of calibration only.

Symbol/Description	Conditions	Transc	eiver Speed	Grade 2	Transceiver Speed Grade 3			Unit
	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
Rise time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	20
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾		_	400			400	ps
Duty cycle	—	45	_	55	45		55	%
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30	_	33	30		33	kHz
Spread-spectrum downspread	PCIe		0 to	_	_	0 to	—	%
			-0.5			-0.5		
On-chip termination resistors	—		100	_		100	_	Ω
Absolute V _{MAX}	Dedicated reference clock pin		_	1.6			1.6	V
	RX reference clock pin		_	1.2			1.2	
Absolute V _{MIN}	—	-0.4	_	_	-0.4			V
Peak-to-peak differential input voltage	-	200	-	1600	200		1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	1000/900/850 (139)		1000/900/850 (139)		(139)	mV	
· • ·	RX reference clock pin	1.	.0/0.9/0.85	140)	1.	.0/0.9/0.85(1	40)	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Мах	Unit
t _{INCCJ} ⁽¹⁷¹⁾ , ⁽¹⁷²⁾	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	_	0.15	UI (p-p)
'INCCJ , , , , , ,	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
t _{outpj_dc} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
COUTPJ_DC	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	_		17.5	mUI (p-p)
(173)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		$250^{(176)}, \\ 175^{(174)}$	ps (p-p)
t _{FOUTPJ_DC} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	—		$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
tournoon = c (173)	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		175	ps (p-p)
t _{OUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

Symbol	Parameter	Min	Тур	Max	Unit
t _{OUTPJ_IO} ^{, (173)} , ⁽¹⁷⁵⁾	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
COUTPJ_IO	Period Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} < 100 \text{ MHz}$)			60	mUI (p-p)
t _{FOUTPJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Period Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
FOUTPJ_IO	Period Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)		_	60	mUI (p-p)
(172) (175)	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)			600	ps (p-p)
t _{OUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in integer PLL (f _{OUT} < 100 MHz)			60	mUI (p-p)
t _{FOUTCCJ_IO} ⁽¹⁷³⁾ , ⁽¹⁷⁵⁾ , ⁽¹⁷⁶⁾	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	600	ps (p-p)
^L FOUTCCJ_IO	Cycle-to-cycle Jitter for a clock output on a regular I/O in fractional PLL (f _{OUT} < 100 MHz)			60	mUI (p-p)
t	Period Jitter for a dedicated clock output in cascaded PLLs ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{CASC_OUTPJ_DC} ⁽¹⁷³⁾ , ⁽¹⁷⁷⁾	Period Jitter for a dedicated clock output in cascaded PLLS (f _{OUT} < 100 MHz)		_	17.5	mUI (p-p)
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	8	24	32	Bits

⁽¹⁷⁵⁾ The external memory interface clock output jitter specifications use a different measurement method, which is available in the "Memory Output Clock Jitter Specification for Arria V GZ Devices" table.

⁽¹⁷⁶⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽¹⁷⁷⁾ The cascaded PLL specification is only applicable with the following condition:

a. Upstream PLL: 0.59Mhz ≤ Upstream PLL BW < 1 MHz

b. Downstream PLL: Downstream PLL BW > 2 MHz

Symbol	Parameter	Min	Тур	Мах	Unit
k _{VALUE}	Numerator of Fraction	128	8388608	2147483648	_
f _{RES}	Resolution of VCO frequency ($f_{INPFD} = 100 \text{ MHz}$)	390625	5.96	0.023	Hz

Related Information

- Duty Cycle Distortion (DCD) Specifications on page 2-56
- DLL Range Specifications on page 2-53

DSP Block Specifications

Table 2-35: DSP Block Performance Specifications for Arria V GZ Devices

Mode	Performar	nce		Unit
mode	C3, I3L	C4 I4		Onic
Modes using One DSP Block				
Three 9 × 9	480	42	20	MHz
One 18 × 18	480	420	400	MHz
Two partial 18×18 (or 16×16)	480	420	400	MHz
One 27 × 27	400	350		MHz
One 36 × 18	400	350		MHz
One sum of two 18×18 (One sum of two 16×16)	400	35	350	
One sum of square	400	35	350	
One 18×18 plus $36 (a \times b) + c$	400	350		MHz
Modes using Two DSP Blocks	·			
Three 18 × 18	400	35	50	MHz
One sum of four 18 × 18	380	30	00	MHz

2-44 Periphery Performance

Description	Min	Тур	Max	Unit
Diode ideality factor	1.006	1.008	1.010	—

Periphery Performance

I/O performance supports several system interfaces, such as the **LVDS** high-speed I/O interface, external memory interface, and the **PCI/PCI-X** bus interface. General-purpose I/O standards such as 3.3-, 2.5-, 1.8-, and 1.5-**LVTTL/LVCMOS** are capable of a typical 167 MHz and 1.2-**LVCMOS** at 100 MHz interfacing frequency with a 10 pF load.

Note: The actual achievable frequency depends on design- and system-specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

High-Speed Clock Specifications

Table 2-39: High-Speed Clock Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

Arria V GZ devices support the following output standards using true LVDS output buffer types on all I/O banks.

- True RSDS output standard with data rates of up to 230 Mbps
- True mini-LVDS output standard with data rates of up to 340 Mbps

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit
4	120	128	ps

Memory Output Clock Jitter Specifications

Table 2-50: Memory Output Clock Jitter Specification for Arria V GZ Devices

The clock jitter specification applies to the memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a PHY, regional, or global clock network as specified. Altera recommends using PHY clock networks whenever possible.

The clock jitter specification applies to the memory output clock pins clocked by an integer PLL.

The memory output clock jitter is applicable when an input jitter of 30 ps peak-to-peak is applied with bit error rate (BER) -12, equivalent to 14 sigma.

Clock Network	Parameter	Symbol	C3, I3L		C4, I4		Unit
			Min	Мах	Min	Мах	Onit
Regional	Clock period jitter	t _{JIT(per)}	-55	55	-55	55	ps
	Cycle-to-cycle period jitter	t _{JIT(cc)}	-110	110	-110	110	ps
	Duty cycle jitter	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Global	Clock period jitter	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
	Cycle-to-cycle period jitter	t _{JIT(cc)}	-165	165	-165	165	ps
	Duty cycle jitter	t _{JIT(duty)}	-90	90	-90	90	ps
PHY Clock	Clock period jitter	t _{JIT(per)}	-30	30	-35	35	ps
	Cycle-to-cycle period jitter	t _{JIT(cc)}	-60	60	-70	70	ps
	Duty cycle jitter	t _{JIT(duty)}	-45	45	-56	56	ps

Table 2-57: FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is >1

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nconfig low to conf_done low	-	600	ns
t _{CF2ST0}	nconfig low to nstatus low	-	600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (210)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1,506 (211)	μs
t _{CF2CK} ⁽²¹²⁾	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} ⁽²¹²⁾	nSTATUS high to first rising edge of DCLK	2	_	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N-1/f _{DCLK} ⁽²¹³⁾	_	S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$	_	S
t _{CL}	DCLK low time	$0.45 \times 1/f_{MAX}$	_	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
£	DCLK frequency (FPP ×8/×16)	—	125	MHz
f_{MAX}	DCLK frequency (FPP ×32)	-	100	MHz
t _R	Input rise time	-	40	ns
t _F	Input fall time	-	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽²¹⁴⁾	175	437	μs

⁽²¹⁰⁾ You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽²¹¹⁾ You can obtain this value if you do not delay configuration by externally holding the nSTATUS low.

 $^{(212)}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

 $^{(213)}$ N is the DCLK-to-DATA ratio and f_{DCLK} is the DCLK frequency the system is operating.

⁽²¹⁴⁾ The minimum and maximum numbers apply only if you use the internal oscillator as the clock source for initializing the device.

Arria V GZ Device Datasheet

Altera Corporation

2-76 Glossary	2-76	Glossary
---------------	------	----------

Term	Definition								
R _L	Receiver differential input discrete resistor (external to the Arria V GZ device).								
SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:								
	Bit Time								
	0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS (SW)								
Single-ended voltage referenced I/O standard	The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard $\frac{V_{\text{KEF}}}{V_{\text{REF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}} = \frac{V_{\text{KEC}}}{V_{\text{KEF}}}$								

