E·XFL

Intel - 5AGZME1E2H29I3LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	10377
Number of Logic Elements/Cells	220000
Total RAM Bits	15282176
Number of I/O	342
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-HBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme1e2h29i3ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol/Description	Condition	Tran	Unit		
Symbol/Description	Condition	Min	Тур	Max	Onic
	10 Hz	_	—	-50	dBc/Hz
Transmitter REFCLK phase noise ⁽⁴³⁾	100 Hz			-80	dBc/Hz
	1 KHz			-110	dBc/Hz
	10 KHz			-120	dBc/Hz
	100 KHz			-120	dBc/Hz
	≥ 1 MHz			-130	dBc/Hz
R _{REF}	_		2000 ±1%		Ω

Table 1-27: Transceiver Clocks Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	Tran	Unit			
Symbol/Description	Condition	Min	Тур	Max	onic	
fixedclk clock frequency	PCIe Receiver Detect	_	125		MHz	
Transceiver Reconfiguration Controller IP (mgmt_clk_clk) clock frequency	—	75	—	125	MHz	

Table 1-28: Receiver Specifications for Arria V GT and ST Devices

Symbol/Description	Condition	T	Unit		
	Condition	Min	Тур	Мах	Onit
Supported I/O Standards	1.5 V PCML, 2.5 V PCML, LVPECL, and LVDS				
Data rate (6-Gbps transceiver) ⁽⁴⁴⁾	_	611		6553.6	Mbps

⁽⁴³⁾ The transmitter REFCLK phase jitter is 30 ps p-p (5 ps RMS) with bit error rate (BER) 10⁻¹², equivalent to 14 sigma.

⁽⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

1-40 Transceiver Compliance Specification

Quartus Prime 1st	Quartus Prime V _{OD} Setting							
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
16	_	_	9.56	7.73	6.49		_	dB
17	_		10.43	8.39	7.02		_	dB
18	_		11.23	9.03	7.52		_	dB
19	_		12.18	9.7	8.02		_	dB
20	_		13.17	10.34	8.59		_	dB
21	_		14.2	11.1			_	dB
22	_		15.38	11.87			_	dB
23	_		_	12.67	_	_	_	dB
24	_		_	13.48			_	dB
25	_		_	14.37	_		_	dB
26	_						_	dB
27	_						_	dB
28	_	_	_	_	_	_	_	dB
29	_		_				_	dB
30	_						_	dB
31	_						_	dB

Related Information

SPICE Models for Altera Devices

Provides the Arria V HSSI HSPICE models.

Transceiver Compliance Specification

The following table lists the physical medium attachment (PMA) specification compliance of all supported protocol for Arria V GX, GT, SX, and ST devices. For more information about the protocol parameter details and compliance specifications, contact your Altera Sales Representative.

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial BanidIO [®] (SBIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
ODSAL	OBSAI 1536	1,536
ODSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
OUTPJ_DC	in integer PLL	$F_{OUT} < 100 \text{ MHz}$	—		17.5	mUI (p-p)
+ (67)	Period jitter for dedicated clock output	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
^L FOUTPJ_DC	in fractional PLL	F _{OUT} < 100 MHz	_		25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t (67)	Cycle-to-cycle jitter for dedicated clock	$F_{OUT} \ge 100 \text{ MHz}$	—	_	175	ps (p-p)
toutccj_dc ⁽⁰⁾	output in integer PLL	F _{OUT} < 100 MHz	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽⁶⁷⁾	Cycle-to-cycle jitter for dedicated clock output in fractional PLL	$F_{OUT} \ge 100 \text{ MHz}$	_		250 ⁽⁶⁸⁾ , 175 ⁽⁶⁹⁾	ps (p-p)
		$F_{OUT} < 100 \text{ MHz}$	—	_	25 ⁽⁶⁸⁾ , 17.5 ⁽⁶⁹⁾	mUI (p-p)
t _{OUTPJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾ Pe res	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	_		600	ps (p-p)
	regular I/O in integer PLL	F _{OUT} < 100 MHz	—		60	mUI (p-p)
t (67)(68)(70)	Period jitter for clock output on a	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
FOUTPJ_IO	regular I/O in fractional PLL	F _{OUT} < 100 MHz	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} ⁽⁶⁷⁾⁽⁷⁰⁾	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
	a regular I/O in integer PLL	F _{OUT} < 100 MHz	—	_	60	mUI (p-p)
t	Cycle-to-cycle jitter for clock output on	$F_{OUT} \ge 100 \text{ MHz}$	—		600	ps (p-p)
t _{FOUTCCJ_IO} (67)(68)(70)	a regular I/O in fractional PLL	F _{OUT} < 100 MHz	_		60	mUI (p-p)

⁽⁶⁷⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Memory Output Clock Jitter Specification for Arria V Devices table.

⁽⁶⁸⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.05–0.95 must be \geq 1000 MHz.

⁽⁶⁹⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽⁷⁰⁾ External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specification for Arria V Devices table.

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition
SPI-4	00000000001111111111	2	128	640
Parallel Rapid I/O	00001111	2	128	640
	10010000	4	64	640
Miscellaneous	10101010	8	32	640
witscenaricous	01010101	8	32	640

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

FPP Configuration Timing when DCLK-to-DATA[] >1

Table 1-67: FPP Timing Parameters When DCLK-to-DATA[] Ratio is >1 for Arria V Devices

Use these timing parameters when you use the decompression and design security features.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	—	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽⁹⁸⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽⁹⁹⁾	μs
t _{CF2CK} ⁽¹⁰⁰⁾	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK} ⁽¹⁰⁰⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	$N - 1/f_{\rm DCLK}^{(101)}$		S
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{ m MAX}$		S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency (FPP ×8/ ×16)	_	125	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	_	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽¹⁰²⁾	175	437	μs

⁽⁹⁸⁾ This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

⁽⁹⁹⁾ This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

 $^{^{(100)}}$ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽¹⁰¹⁾ N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

⁽¹⁰²⁾ The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A1	71,015,712	439,960
	A3	71,015,712	439,960
	A5	101,740,800	446,360
Arria V CY	A7	101,740,800	446,360
	B1	137,785,088	457,368
	B3	137,785,088	457,368
	B5	185,915,808	463,128
	B7	185,915,808	463,128
	C3	71,015,712	439,960
	C7	101,740,800	446,360
Allia v GI	D3	137,785,088	457,368
	D7	185,915,808	463,128
Arria V SV	B3	185,903,680	450,968
Arria V SX	B5	185,903,680	450,968
Arria V ST	D3	185,903,680	450,968
Arria V SI	D5	185,903,680	450,968

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

Date	Version	Changes
January 2015	2015.01.30	Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices
		• Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		• Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		• Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.
		• Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).
		Changed the symbol for HPS PLL input jitter divide value from NR to N.
		• Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices
		 Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.
		Added HPS JTAG timing specifications.
		• Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{JPCO} = 13$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.
		• Updated the value in the V _{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

I/O Standard	V _{CCIO} (V)				V _{REF} (V)		V _{TT} (V)			
	Min	Тур	Max	Min	Тур	Max	Min	Тур	Мах	
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 imes V_{ m CCIO}$	0.49 × V _{CCIO}	$0.5 \times V_{CCIO}$	$0.51 \times V_{CCIO}$	
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	$0.49 \times V_{ m CCIO}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	
SSTL-12 Class I, II	1.14	1.20	1.26	$0.49 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$	0.49 × V _{CCIO}	0.5 × VCCIO	$0.51 \times V_{CCIO}$	
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCIO} /2	_	
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.75	0.9	_	V _{CCIO} /2	_	
HSTL-12 Class I, II	1.14	1.2	1.26	$0.47 \times V_{CCIO}$	$0.5 imes V_{ m CCIO}$	$0.53 \times V_{ m CCIO}$	_	V _{CCIO} /2	_	
HSUL-12	1.14	1.2	1.3	$0.49 \times V_{CCIO}$	$0.5 \times V_{ m CCIO}$	$0.51 \times V_{ m CCIO}$			_	

Table 2-18: Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Arria V GZ Devices

I/O Standard	V _{IL(D}	_{C)} (V)	V _{IH(DC)} (V)		V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	L.(mA)	I. (mA)
	Min	Max	Min	Max	Мах	Min	Max	Min	י _{סן} (וויא)	
SSTL-2 Class I	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard		V _{CCIO} (V)		V _{SWING(DC)} (V)		V _{X(AC)} (V)			V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2		V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	$V_{CCIO} + 0.6$	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18		V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30	

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

V _{CCIO} (V)		/)	V _{DIF}	_(DC) (V)	$V_{X(AC)}(V)$			V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Мах
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68		0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{CCIO}$	_	$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 × V _{CCIO} – 0.12	$0.5 \times V_{CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{CCIO}$	0.5 × V _{CC} IO	0.6 × V _{CCIO}	0.44	0.44

Table 2-21: Differential I/O Standard Specifications for Arria V GZ Devices

I/O Standard	ndard		128)	V _{ID} (mV) ⁽¹²⁹⁾		V _{ICM(DC)} (V)			V _{OD} (V) ⁽¹³⁰⁾			V _{OCM} (V) ⁽¹³⁰⁾			
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to the "Transceiver Performance Specifications" section.														
2.5 V	2 375	25	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247	—	0.6	1.125	1.25	1.375
(131)	2.373	2.5	2.025	100	1.25 V		1.05	D _{MAX} > 700 Mbps	1.55	0.247	—	0.6	1.125	1.25	1.375
BLVDS (132)	2.375	2.5	2.625	100						_	_			—	

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

⁽¹³⁰⁾ RL range: $90 \le \text{RL} \le 110 \Omega$.

⁽¹³¹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

 $^{^{(132)}}$ There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.

Switching Characteristics

Transceiver Performance Specifications

Reference Clock

Table 2-22: Reference Clock Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Transce	eiver Speed (Grade 2	Transce	iver Speed	Unit			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit		
Reference Clock										
Supported I/O Standards	Dedicated reference clock pin	1.2-V PCM and HCSL	L, 1.4-V PC	ML, 1.5-V P	CML, 2.5-V	PCML, Di	fferential LV	PECL, LVDS,		
	RX reference clock pin	1.4-V PCML, 1.5-V PCML, 2.5-V PCML, LVPECL, and LVDS								
Input Reference Clock Frequency (CMU PLL) ⁽¹³⁷⁾	_	40		710	40		710	MHz		
Input Reference Clock Frequency (ATX PLL) ⁽¹³⁷⁾	-	100		710	100		710	MHz		

⁽¹³⁷⁾ The input reference clock frequency options depend on the data rate and the device speed grade.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max	Onic
	DC gain setting = 0	—	0	_	_	0	—	dB
	DC gain setting = 1		2	_		2	_	dB
Programmable DC gain	DC gain setting = 2		4			4		dB
	DC gain setting = 3		6			6	_	dB
	DC gain setting = 4	_	8			8		dB

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transmitter

Table 2-25: Transmitter Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	Onit	
Supported I/O Standards	1.4-V and 1.5-V PCML								
Data rate (Standard PCS)	—	600	_	9900	600		8800	Mbps	
Data rate (10G PCS)	_	600	_	12500	600	_	10312.5	Mbps	

DLL Range Specifications

Table 2-47: DLL Range Specifications for Arria V GZ Devices

Arria V GZ devices support memory interface frequencies lower than 300 MHz, although the reference clock that feeds the DLL must be at least 300 MHz. To support interfaces below 300 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range of the DLL.

Parameter	C3, I3L	C4, I4	Unit
DLL operating frequency range	300 - 890	300 - 890	MHz

DQS Logic Block Specifications

Table 2-48: DQS Phase Offset Delay Per Setting for Arria V GZ Devices

The typical value equals the average of the minimum and maximum values.

The delay settings are linear with a cumulative delay variation of 40 ps for all speed grades. For example, when using a -3 speed grade and applying a 10-phase offset setting to a 90° phase shift at 400 MHz, the expected average cumulative delay is $[625 \text{ ps} + (10 \times 11 \text{ ps}) \pm 20 \text{ ps}] = 735 \text{ ps} \pm 20 \text{ ps}$.

Speed Grade	Min	Мах	Unit
C3, I3L	8	15	ps
C4, I4	8	16	ps

Table 2-49: DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria V GZ Devices

This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a -3 speed grade is ± 84 ps or ± 42 ps.

Number of DQS Delay Buffers	C3, I3L	C4, I4	Unit
1	30	32	ps
2	60	64	ps
3	90	96	ps

OCT Calibration Block Specifications

Table 2-51: OCT Calibration Block Specifications for Arria V GZ Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by the OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for OCT R_S/R_T calibration		1000		Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for the OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between OCT R_S and R_T (See the figure below.)		2.5		ns

Figure 2-6: Timing Diagram for oe and dyn_term_ctrl Signals

Related Information

- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reconfiguration input for the ALTREMOTE_UPDATE IP core, refer to the "User Watchdog Timer" section.
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices For more information about the reset_timer input for the ALTREMOTE_UPDATE IP core, refer to the "Remote System Upgrade State Machine" section.

User Watchdog Internal Oscillator Frequency Specification

Table 2-65: User Watchdog Internal Oscillator Frequency Specifications

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete placeand-route.

Related Information

Arria V Devices Documentation page

For the Excel-based I/O Timing spreadsheet

Arria V GZ Device Datasheet

Altera Corporation

⁽²²⁶⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

⁽²²⁷⁾ This is equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the Configuration, Design Security, and Remote System Upgrades in Arria V Devices chapter.

Term	Definition
	Single-Ended Waveform Positive Channel (p) = V_{0H} V_{0D} Negative Channel (n) = V_{0L} V_{CM} Ground
	Differential Waveform V_{0D} V_{0D} V_{0D} V_{0D}
f _{HSCLK}	Left and right PLL input clock frequency.
f _{HSDR}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
f _{hsdrdpa}	High-speed I/O block—Maximum and minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.
J	High-speed I/O block—Deserialization factor (width of parallel data bus).

Term	Definition
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—clock boost factor

Document Revision History

Date	Version	Changes
February 2017	2017.02.10	 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1" table. Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK to DATA[] Ratio is 1" table.
		 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices" table. Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Arria V GZ Devices" table. Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices" table.

