

Welcome to **E-XFL.COM**

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	10377
Number of Logic Elements/Cells	220000
Total RAM Bits	15282176
Number of I/O	414
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme1h3f35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V_{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe® hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
$\overline{V_{I}}$	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Altera Corporation

Arria V GX, GT, SX, and ST Device Datasheet

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
V	Cara valtaga navvar supply	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V_{CC}	Core voltage power supply	-I3	1.12	1.15	1.18	V
V	Periphery circuitry, PCIe hard IP block,	-C4, -I5, -C5, -C6	1.07	1.1	1.13	V
V_{CCP}	and transceiver PCS power supply	-I3	1.12	1.15	1.18	V
		3.3 V	3.135	3.3	3.465	V
V	Configuration pins power supply	3.0 V	2.85	3.0	3.15	V
V_{CCPGM}	Configuration pins power supply	2.5 V	2.375	2.5	2.625	V
		1.8 V	1.71	1.8	1.89	V
V _{CC_AUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V _{CCBAT} ⁽²⁾	Battery back-up power supply	_	1.2	_	3.0	V
	(For design security volatile key register)					
		3.3 V	3.135	3.3	3.465	V
$V_{CCPD}^{(3)}$	I/O pre-driver power supply	3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽²⁾ If you do not use the design security feature in Arria V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. Arria V power-on reset (POR) circuitry monitors V_{CCBAT}. Arria V devices do not exit POR if V_{CCBAT} is not powered up.

 $^{^{(3)}}$ V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, 1.35, 1.25, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V. V_{CCPD} must be 3.3 V when V_{CCIO} is 3.3 V.

I/O Pin Leakage Current

Table 1-6: I/O Pin Leakage Current for Arria V Devices

Symbol	Description	Condition	Min	Тур	Max	Unit
I_{I}	Input pin	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	-30	_	30	μΑ
I _{OZ}	Tri-stated I/O pin	$V_O = 0 V \text{ to } V_{CCIOMAX}$	-30	_	30	μΑ

Bus Hold Specifications

Table 1-7: Bus Hold Parameters for Arria V Devices

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

			V _{CCIO} (V)												
Parameter	Symbol	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3.	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	$V_{IN} > V_{IL}$ (max)	8	_	12	_	30	_	50	_	70	_	70	_	μA
Bus-hold, high, sustaining current	I _{SUSH}	$V_{IN} < V_{IH}$ (min)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μA
Bus-hold, low, overdrive current	I _{ODL}	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μA
Bus-hold, high, overdrive current	I _{ODH}	0 V <v<sub>IN <v<sub>CCIO</v<sub></v<sub>	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μA

Arria V GX, GT, SX, and ST Device Datasheet

Symbol	Description	Maximum	Unit
I _{XCVR-RX} (DC)	DC current per transceiver receiver (RX) pin	50	mA

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
$ m R_{PU}$	-	$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
КрО		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{\text{CCIO}} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{\text{CCIO}} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

Arria V GX, GT, SX, and ST Device Datasheet

The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

⁽¹²⁾ Valid with ±10% tolerances to cover changes over PVT.

I/O Standard Specifications

Tables in this section list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Arria V devices.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

Single-Ended I/O Standards

Table 1-14: Single-Ended I/O Standards for Arria V Devices

I/O Standard		V _{CCIO} (V)		1	V _{IL} (V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} ⁽¹³⁾	I _{OH} ⁽¹³⁾ (mA)
i/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	IOH. (IIIA)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
3.0-V PCI	2.85	3	3.15	_	$0.3 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{\text{CCIO}}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	_	$0.35 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	$V_{\rm CCIO} + 0.3$	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2

To meet the I_{OL} and I_{OH} specifications, you must set the current strength settings accordingly. For example, to meet the 3.3-V LVTTL specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the I_{OL} and I_{OH} specifications in the datasheet.

Arria V GX, GT, SX, and ST Device Datasheet

Symbol/Description	Condition	Transc	eiver Speed G	Grade 4	Transceiver Speed Grade 6			Unit
3ymbor/Description		Min	Тур	Max	Min	Тур	Max	Offic
Run length	_	_	_	200	_	_	200	UI
Programmable equalization AC and DC gain	AC gain setting = 0 to $3^{(38)}$ DC gain setting = 0 to 1	Gain and Response	TLE Respons DC Gain for at Data Rates ain for Arria	r Arria V GX, s ≤ 3.25 Gbps	, GT, SX, and across Supp	ST Devices a orted AC Gai	nd CTLE in and DC	dB

Table 1-23: Transmitter Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transc	eiver Speed C	irade 4	Transc	eiver Speed G	irade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Offic
Supported I/O standards				1.5 V PC	ML			
Data rate	_	611	_	6553.6	611	_	3125	Mbps
V _{OCM} (AC coupled)	_	_	650	_	_	650	_	mV
V _{OCM} (DC coupled)	$\leq 3.2 \text{Gbps}^{(32)}$	670	700	730	670	700	730	mV
	85-Ω setting	_	85	_	_	85	_	Ω
Differential on-chip	100- Ω setting	_	100	_	_	100	_	Ω
termination resistors	120- $Ω$ setting	_	120	_	_	120	_	Ω
	150- Ω setting	_	150	_	_	150	_	Ω
Intra-differential pair skew	TX V _{CM} = 0.65 V (AC coupled) and slew rate of 15 ps	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode	_	_	180	_	_	180	ps

Arria V GX, GT, SX, and ST Device Datasheet

The rate match FIFO supports only up to ±300 parts per million (ppm).

The Quartus Prime software allows AC gain setting = 3 for design with data rate between 611 Mbps and 1.25 Gbps only.

DSP Block Performance Specifications

Table 1-37: DSP Block Performance Specifications for Arria V Devices

	Mode		Performance		Unit	
	Wode	−I3, −C4	−I5, −C5	-C6	Onit	
	Independent 9 × 9 multiplication	370	310	220	MHz	
	Independent 18 × 19 multiplication	370	310	220	MHz	
	Independent 18 × 25 multiplication	370	310	220	MHz	
C	Independent 20 × 24 multiplication	370	310	220	MHz	
Block	Independent 27 × 27 multiplication	310	250	200	MHz	
	Two 18 × 19 multiplier adder mode	370	310	220	MHz	
	18×18 multiplier added summed with 36-bit input	370	310	220	MHz	
Modes using Two DSP Blocks	Complex 18 × 19 multiplication	370	310	220	MHz	

Memory Block Performance Specifications

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX} .

Altera Corporation Arria V GX, GT, SX, and ST Device Datasheet

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Memory	Mode	Resourc	es Used		Performance		- Unit	
Welliory	Mode	ALUTs	Memory	−I3, −C4	−l5, −C5	- C 6	Offic	
	Single port, all supported widths	0	1	500	450	400	MHz	
MLAB Sim	Simple dual-port, all supported widths	0	1	500	450	400	MHz	
	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz	
	ROM, all supported width	_	_	500	450	400	MHz	
	Single-port, all supported widths	0	1	400	350	285	MHz	
	Simple dual-port, all supported widths	0	1	400	350	285	MHz	
M10K Block	Simple dual-port with the read-during-write option set to Old Data , all supported widths	0	1	315	275	240	MHz	
	True dual port, all supported widths	0	1	400	350	285	MHz	
	ROM, all supported widths	0	1	400	350	285	MHz	

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
−40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

Arria V GX, GT, SX, and ST Device Datasheet

Figure 1-9: SPI Master Timing Diagram

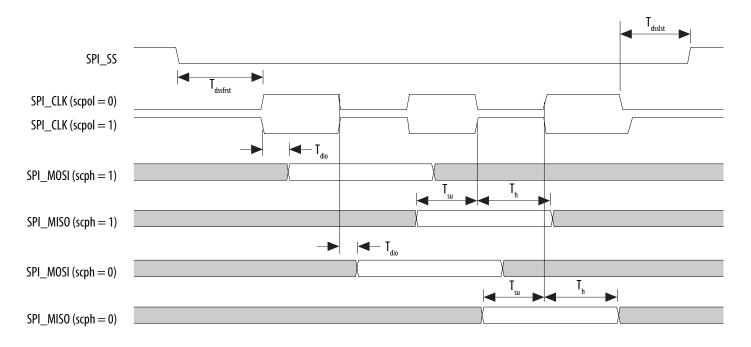
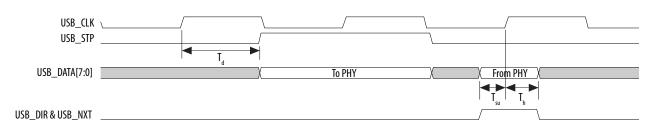


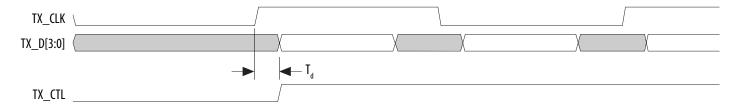
Table 1-53: SPI Slave Timing Requirements for Arria V Devices


The setup and hold times can be used for Texas Instruments SSP mode and National Semiconductor Microwire mode.

Symbol	Description	Min	Max	Unit
T_{clk}	CLK clock period	20	_	ns
T_s	MOSI Setup time	5	_	ns
T_{h}	MOSI Hold time	5	_	ns
T_{suss}	Setup time SPI_SS valid before first clock edge	8	_	ns
T _{hss}	Hold time SPI_SS valid after last clock edge	8	_	ns
T_d	MISO output delay	_	6	ns

Arria V GX, GT, SX, and ST Device Datasheet

Figure 1-12: USB Timing Diagram



Ethernet Media Access Controller (EMAC) Timing Characteristics

Table 1-56: Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
T _{clk} (1000Base-T)	TX_CLK clock period	_	8	_	ns
T _{clk} (100Base-T)	TX_CLK clock period	_	40	_	ns
T _{clk} (10Base-T)	TX_CLK clock period	_	400	_	ns
T _{dutycycle}	TX_CLK duty cycle	45	_	55	%
T_d	TX_CLK to TXD/TX_CTL output data delay	-0.85	_	0.15	ns

Figure 1-13: RGMII TX Timing Diagram

HPS JTAG Timing Specifications

Table 1-62: HPS JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Max	Unit
t_{JCP}	TCK clock period	30	_	ns
t _{JCH}	TCK clock high time	14	_	ns
$t_{ m JCL}$	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t_{JPH}	JTAG port hold time	5	_	ns
$t_{ m JPCO}$	JTAG port clock to output	_	12 ⁽⁹⁰⁾	ns
t_{JPZX}	JTAG port high impedance to valid output	_	$14^{(90)}$	ns
$t_{ m JPXZ}$	JTAG port valid output to high impedance	_	14 ⁽⁹⁰⁾	ns

Configuration Specifications

This section provides configuration specifications and timing for Arria V devices.

POR Specifications

Table 1-63: Fast and Standard POR Delay Specification for Arria V Devices

POR Delay	Minimum	Maximum	Unit
Fast	4	12 ⁽⁹¹⁾	ms

 $^{^{(90)}}$ A 1-ns adder is required for each V_{CCIO_HPS} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO_HPS} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Arria V GX, GT, SX, and ST Device Datasheet

⁽⁹¹⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis
 For more information about PowerPlay power analysis.

Power Consumption

Altera offers two ways to estimate power consumption for a design—the Excel-based Early Power Estimator and the Quartus II PowerPlay Power Analyzer feature.

Note: You typically use the interactive Excel-based Early Power Estimator before designing the FPGA to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

Related Information

- PowerPlay Early Power Estimator User Guide For more information about the EPE tool.
- PowerPlay Power Analysis
 For more information about PowerPlay power analysis.

I/O Pin Leakage Current

Table 2-8: I/O Pin Leakage Current for Arria V GZ Devices

If $V_O = V_{CCIO}$ to $V_{CCIOMax}$, 100 μA of leakage current per I/O is expected.

Symbol	Description	Conditions	Min	Тур	Max	Unit
I_{I}	Input pin	$V_{\rm I} = 0 \text{ V to } V_{\rm CCIOMAX}$	-30		30	μΑ
I_{OZ}	Tri-stated I/O pin	$V_O = 0 V \text{ to } V_{CCIOMAX}$	-30	_	30	μΑ

I/O Standard Specifications

The V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

Table 2-16: Single-Ended I/O Standards for Arria V GZ Devices

I/O Standard		V _{CCIO} (V)		V _{II}	_(V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL} (mA)	I _{OH} (mA)
i/O Staildaid	Min	Тур	Max	Min	Max	Min	Max	Max	Min	IOL (IIIA)	IOH (IIIA)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{\rm CCIO}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{\rm CCIO}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	$\begin{array}{c} 0.25 \times \\ V_{\rm CCIO} \end{array}$	$0.75 \times V_{\text{CCIO}}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{\rm CCIO}$	$0.65 \times V_{\rm CCIO}$	V _{CCIO} + 0.3	$\begin{array}{c} 0.25 \times \\ V_{\rm CCIO} \end{array}$	$0.75 \times V_{\text{CCIO}}$	2	-2

Table 2-17: Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{REF} (V)			V _{TT} (V)			
I/O Stallualu	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$\begin{array}{c} 0.5 \times \\ V_{\rm CCIO} \end{array}$	$0.51 \times V_{\rm CCIO}$	V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} - 0.04	V_{REF}	V _{REF} + 0.04	
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{\text{CCIO}}$	$0.5 \times V_{\rm CCIO}$	$0.51 \times V_{\rm CCIO}$	$\begin{array}{c} 0.49 \times \\ V_{\rm CCIO} \end{array}$	0.5 × VCCIO	$0.51 \times V_{CCIO}$	

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	Offic
	100 Hz	_	_	-70	_	_	-70	dBc/Hz
	1 kHz	_	_	-90	_	_	-90	dBc/Hz
Transmitter REFCLK Phase Noise (622 MHz) (141)	10 kHz	_	_	-100	_	_	-100	dBc/Hz
1,000 (022 11112)	100 kHz	_	_	-110	_	_	-110	dBc/Hz
	≥1 MHz	_	_	-120	_	_	-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) (142)	10 kHz to 1.5 MHz (PCIe)	_	_	3	_	_	3	ps (rms)
R _{REF}	_	_	1800 ±1%	_	_	1800 ±1%	_	Ω

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transceiver Clocks

Table 2-23: Transceiver Clocks Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at

To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at $100 MHz \times 100/f$.

Typical VOD Settings

Table 2-32: Typical V_{OD} Setting for Arria V GZ Channel, TX Termination = 100 Ω

The tolerance is +/-20% for all VOD settings except for settings 2 and below.

Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	0 (166)	0	32	640
	1 ⁽¹⁶⁶⁾	20	33	660
	2(166)	40	34	680
	3 ⁽¹⁶⁶⁾	60	35	700
	4 ⁽¹⁶⁶⁾	80	36	720
	5 ⁽¹⁶⁶⁾	100	37	740
	6	120	38	760
$ m V_{OD}$ differential peak to peak typical	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920

Altera Corporation Arria V GZ Device Datasheet

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω, this VOD setting is illegal.

Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	15	300	47	940
	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
$ m V_{OD}$ differential peak to peak typical	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Mode	Performan	ıce		Unit	
Mode	C3, I3L	C4	14	Onic	
One sum of two 27×27	380	300	MHz		
One sum of two 36×18	380	30	MHz		
One complex 18 × 18	400	35	MHz		
One 36 × 36	380	30	MHz		
Modes using Three DSP Blocks					
One complex 18 × 25	340	275	265	MHz	
Modes using Four DSP Blocks	•				
One complex 27×27	350	310		MHz	

Memory Block Specifications

Table 2-36: Memory Block Performance Specifications for Arria V GZ Devices

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX} .

Memory	Mode	Resources Used		Performance				Unit
		ALUTs	Memory	C3	C4	I3L	14	Offic
MLAB	Single port, all supported widths	0	1	400	315	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	400	315	400	315	MHz
	Simple dual-port, x16 depth (178)	0	1	533	400	533	400	MHz
	ROM, all supported widths	0	1	500	450	500	450	MHz

⁽¹⁷⁸⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

Altera Corporation

Arria V GZ Device Datasheet

Figure 2-4: LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for a Data Rate ≥ 1.25 Gbps

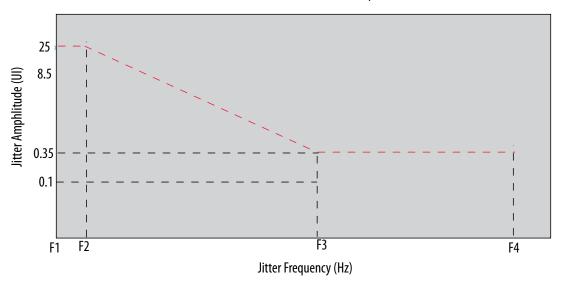


Table 2-45: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate ≥ 1.25 Gbps


Jitter Fred	Sinusoidal Jitter (UI)		
F1	10,000	25.000	
F2	17,565	25.000	
F3	1,493,000	0.350	
F4	50,000,000	0.350	

Passive Serial Configuration Timing

Figure 2-10: PS Configuration Timing Waveform

Timing waveform for a passive serial (PS) configuration when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 2. After power-up, the Arria V GZ device holds nSTATUS low for the time of the POR delay.
- 3. After power-up, before and during configuration, CONF_DONE is low.
- 4. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 5. DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the Device and Pins Option.
- 6. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 7. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Term	Definition
$t_{\rm C}$	High-speed receiver and transmitter input and output clock period.
TCCS (channel-to- channel-skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table).
$t_{ m DUTY}$	High-speed I/O block—Duty cycle on the high-speed transmitter output clock.
$t_{ m FALL}$	Signal high-to-low transition time (80-20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.
t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.
t _{RISE}	Signal low-to-high transition time (20-80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. $(TUI = 1/(receiver input clock frequency multiplication factor) = t_C/w)$
$V_{CM(DC)}$	DC common mode input voltage.
V_{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
$\overline{ m V_{IH}}$	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
$ m V_{IH(DC)}$	High-level DC input voltage
V_{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage

