Intel - 5AGZME3E2H29C3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	16980
Number of Logic Elements/Cells	360000
Total RAM Bits	23946240
Number of I/O	342
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-HBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme3e2h29c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Conditions Switching Characteristics Transceiver Performance Specifications Core Performance Specifications Periphery Performance Configuration Specification POR Specifications JTAG Configuration Specifications Fast Passive Parallel (FPP) Configuration Timing Active Serial Configuration Timing	2-1
Switching Characteristics	2-21
Transceiver Performance Specifications	
Core Performance Specifications	2-37
Periphery Performance	
Configuration Specification	2-56
POR Specifications	2-56
JTAG Configuration Specifications	
Fast Passive Parallel (FPP) Configuration Timing	
Active Serial Configuration Timing Passive Serial Configuration Timing	
Passive Serial Configuration Timing	2-67
Initialization	
Initialization	
Remote System Upgrades Circuitry Timing Specification	2-70
User Watchdog Internal Oscillator Frequency Specification	2-71
I/O Timing	2-71
Programmable IOE Delay	2-72
Programmable Output Buffer Delay	
Glossary	2-73
Programmable Output Buffer Delay Glossary Document Revision History	2-78

Transceiver Power Supply Operating Conditions

Table 1-4: Transceiver Power Supply Operating Conditions for Arria V Device	es
---	----

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2.375	2.500	2.625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.373	2.300	2.025	v
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1.17	1.20	1.23	V
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17	1.20	1.23	v
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1.1/1.15 ⁽⁶⁾	1.14/1.18	V
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1.17	1.20	1.23	V
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17	1.20	1.23	v
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1.425	1.500	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.373	v

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	25	500	53	1060
	26	520	54	1080
	27	540	55	1100
	28	560	56	1120
	29	580	57	1140
	30	600	58	1160
	31	620	59	1180
	32	640	60	1200
	33	660		

Transmitter Pre-Emphasis Levels

The following table lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

Arria V devices only support 1st post tap pre-emphasis with the following conditions:

- The 1st post tap pre-emphasis settings must satisfy $|B| + |C| \le 60$ where $|B| = V_{OD}$ setting with termination value, $R_{TERM} = 100 \Omega$ and |C| = 1st post tap pre-emphasis setting.
- |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.

Exception for PCIe Gen2 design: V_{OD} setting = 43 and pre-emphasis setting = 19 are allowed for PCIe Gen2 design with transmit de-emphasis – 6dB setting (pipe_txdeemp = 1'b0) using Altera PCIe Hard IP and PIPE IP cores.

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

For example, when V_{OD} = 800 mV, the corresponding V_{OD} value setting is 40. The following conditions show that the 1st post tap pre-emphasis setting = 2 is valid:

- $|B| + |C| \le 60 \Rightarrow 40 + 2 = 42$ ٠
- $|B| |C| > 5 \rightarrow 40 2 = 38$
- $(V_{MAX}/V_{MIN} 1)\% < 600\% \Rightarrow (42/38 1)\% = 10.52\%$

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria V HSSI HSPICE models.

Table 1-33: Transmitter Pre-Emphasis Levels for Arria V Devices

Quartus Prime 1st		Quartus Prime V _{OD} Setting							
Post Tap Pre- Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV) 40 (800 r		40 (800 mV) 45 (900 mV)		Unit	
0	0	0	0	0	0	0	0	dB	
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB	
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB	
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB	
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB	
5	_	4.19	2.55	2.1	1.76	1.49	1.26	dB	
6	_	5.08	3.11	2.56	2.17	1.83	1.56	dB	
7	_	5.99	3.71	3.06	2.58	2.18	1.87	dB	
8	_	6.92	4.22	3.47	2.93	2.48	2.11	dB	
9	_	7.92	4.86	4	3.38	2.87	2.46	dB	
10	_	9.04	5.46	4.51	3.79	3.23	2.77	dB	
11	_	10.2	6.09	5.01	4.23	3.61	—	dB	
12	_	11.56	6.74	5.51	4.68	3.97	—	dB	
13	_	12.9	7.44	6.1	5.12	4.36	—	dB	
14	_	14.44	8.12	6.64	5.57	4.76	_	dB	
15	_	_	8.87	7.21	6.06	5.14	—	dB	

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Protocol	Sub-protocol	Data Rate (Mbps)
	SONET 155	155.52
SONET	SONET 622	622.08
	SONET 2488	2,488.32
	GPON 155	155.52
Gigabit-capable passive optical network (GPON)	GPON 622	622.08
Orgabil-Capable passive optical network (Or ON)	GPON 1244	1,244.16
	GPON 2488	2,488.32
QSGMII	QSGMII 5000	5,000

Core Performance Specifications

Clock Tree Specifications

Table 1-35: Clock Tree Specifications for Arria V Devices

Parameter		Performance	Unit	
Falanetei	–I3, –C4	–I5, –C5	-C6	Onic
Global clock and Regional clock	625	625	525	MHz
Peripheral clock	450	400	350	MHz

PLL Specifications

Table 1-36: PLL Specifications for Arria V Devices

This table lists the Arria V PLL block specifications. Arria V PLL block does not include HPS PLL.

Table 1-38: Memory Block Performance Specifications for Arria V Devices

Memory	Mode	Resources Used			Performance	Unit	
Memory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	Onit
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	—		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits

Periphery Performance

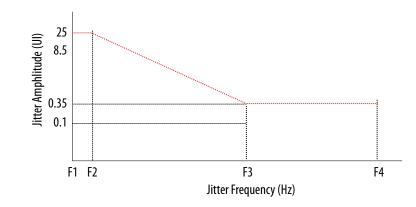
This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

AV-51002 2017.02.10

Symbol	Condition		-I3, -C4		–I5, –C5			-C6			Unit
Symbol	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	SERDES factor J ≥ 8 ⁽⁷⁶⁾⁽⁷⁸⁾ , LVDS TX with RX DPA	(77)		1600	(77)		1500	(77)	_	1250	Mbps
	SERDES factor J = 1 to 2, Uses DDR Registers	(77)		(79)	(77)		(79)	(77)	_	(79)	Mbps
Emulated Differential I/ O Standards with Three External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		945	(77)		945	(77)		945	Mbps
Emulated Differential I/ O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁸⁰⁾	SERDES factor $J = 4$ to $10^{(81)}$	(77)		200	(77)		200	(77)		200	Mbps
t _{x Jitter} -True Differential I/O Standards	Total Jitter for Data Rate 600 Mbps – 1.25 Gbps			160			160		_	160	ps
	Total Jitter for Data Rate < 600 Mbps			0.1	_	_	0.1	—	_	0.1	UI

 $^{^{(78)}}$ The V_{CC} and V_{CCP} must be on a separate power layer and a maximum load of 5 pF for chip-to-chip interface.


⁽⁷⁹⁾ The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency (f_{OUT}), provided you can close the design timing and the signal integrity simulation is clean.

⁽⁸⁰⁾ You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

⁽⁸¹⁾ When using True LVDS RX channels for emulated LVDS TX channel, only serialization factors 1 and 2 are supported.

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications

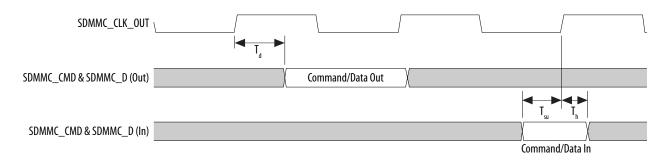


Table 1-42: LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.25 Gbps

Jitter Freq	uency (Hz)	Sinusoidal Jitter (UI)
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

Figure 1-11: SD/MMC Timing Diagram

Related Information

Booting and Configuration Chapter, Arria V Hard Processor System Technical Reference Manual Provides more information about CSEL pin settings in the SD/MMC Controller CSEL Pin Settings table.

USB Timing Characteristics

PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.

Table 1-55: USB Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
T _{clk}	USB CLK clock period	_	16.67	_	ns
T _d	CLK to USB_STP/USB_DATA[7:0] output delay	4.4	—	11	ns
T _{su}	Setup time for USB_DIR/USB_NXT/USB_DATA[7:0]	2	_		ns
T _h	Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]	1	—		ns

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A1	71,015,712	439,960
	A3	71,015,712	439,960
	A5	101,740,800	446,360
Arria V GX	A7	101,740,800	446,360
Allia V GA	B1	137,785,088	457,368
	B3	137,785,088	457,368
	B5	185,915,808	463,128
	B7	185,915,808	463,128
	C3	71,015,712	439,960
Arria V GT	C7	101,740,800	446,360
Allia v GI	D3	137,785,088	457,368
	D7	185,915,808	463,128
Arria V SX	B3	185,903,680	450,968
Allia v SA	B5	185,903,680	450,968
Arria V ST	D3	185,903,680	450,968
7111a V 51	D5	185,903,680	450,968

Minimum Configuration Time Estimation

Table 1-73: Minimum Configuration Time Estimation for Arria V Devices

The estimated values are based on the configuration .rbf sizes in Uncompressed .rbf Sizes for Arria V Devices table.

Date	Version	Changes
January 2015	2015.01.30	• Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards. Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification. Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		 Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz. Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade). Changed the symbol for HPS PLL input jitter divide value from NR to N. Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board. Added HPS JTAG timing specifications. Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, t_{JPCO} = 13 ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V. Updated the value in the V_{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)		V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)			
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3		$0.5 \times V_{CCIO}$		$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.3	V _{CCIO} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	$0.5 \times V_{\rm CCIO} - 0.12$	$0.5 \times V_{CCIO}$	$0.5 \times V_{CCIO} + 0.12$	$0.4 \times V_{\rm CCIO}$	0.5 × V _{CC} IO	$0.6 \times V_{CCIO}$	0.44	0.44

Table 2-21: Differential I/O Standard Specifications for Arria V GZ Devices

I/O Standard		128)		V_{ID} (mV) $^{(129)}$		V _{ICM(DC)} (V)		V _{OD} (V) ⁽¹³⁰⁾		V _{OCM} (V) ⁽¹³⁰⁾					
	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML Transmitter, receiver, and input reference clock pins of the high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to the "Transceiver Performance Specifications" section.															
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} =		0.05	D _{MAX} ≤ 700 Mbps	1.8	0.247		0.6	1.125	1.25	1.375
(131)	2.373	2.3	2.025	100	1.25 V	_	1.05	D _{MAX} > 700 Mbps	1.55	0.247	—	0.6	1.125	1.25	1.375
BLVDS (132)	2.375	2.5	2.625	100											

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

⁽¹³⁰⁾ RL range: $90 \le RL \le 110 \Omega$.

⁽¹³¹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.6 V for data rates above 700 Mbps, and 0 V to 1.85 V for data rates below 700 Mbps.

 $^{^{(132)}}$ There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. They depend on the system topology.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit	
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit	
Rise time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	20	
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾		_	400			400	ps	
Duty cycle	—	45	_	55	45		55	%	
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30	_	33	30		33	kHz	
Spread-spectrum downspread	PCIe		0 to	_	_	0 to	—	%	
			-0.5			-0.5			
On-chip termination resistors	—		100	_		100		Ω	
Absolute V _{MAX}	Dedicated reference clock pin		_	1.6			1.6	V	
	RX reference clock pin		_	1.2			1.2		
Absolute V _{MIN}	—	-0.4	_	_	-0.4			V	
Peak-to-peak differential input voltage	-	200	-	1600	200		1600	mV	
V _{ICM} (AC coupled)	Dedicated reference clock pin	1000/900/850 (139)			10	00/900/850	(139)	mV	
· • ·	RX reference clock pin	1.	.0/0.9/0.85	140)	1.	.0/0.9/0.85(1	mV		
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV	

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

AV-51002 2017.02.10

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transce	eiver Speed (Unit	
Symbol/Description	Mir		Тур	Max	Min	Тур	Max	Onic
	100 Hz	—	—	-70		—	-70	dBc/Hz
	1 kHz		_	-90			-90	dBc/Hz
Transmitter REFCLK Phase Noise (622 MHz) ⁽¹⁴¹⁾	10 kHz		_	-100			-100	dBc/Hz
	100 kHz		_	-110			-110	dBc/Hz
	≥1 MHz		_	-120			-120	dBc/Hz
Transmitter REFCLK Phase Jitter (100 MHz) ⁽¹⁴²⁾	10 kHz to 1.5 MHz (PCIe)		_	3			3	ps (rms)
R _{REF}	—		1800 ±1%			1800 ±1%		Ω

Related Information

Arria V Device Overview

For more information about device ordering codes.

Transceiver Clocks

Table 2-23: Transceiver Clocks Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

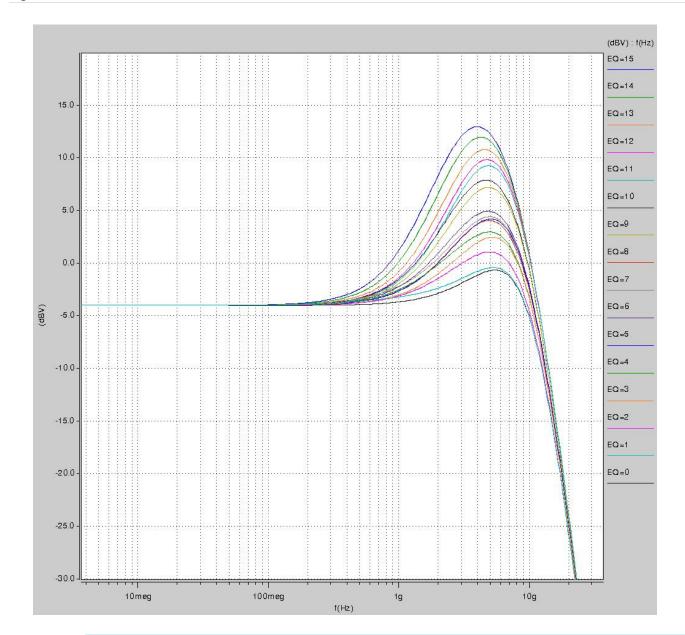
Arria V GZ Device Datasheet

Altera Corporation

 $^{^{(141)}}$ To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f(MHz) = REFCLK phase noise at 622 MHz + 20 *log(f/622).

⁽¹⁴²⁾ To calculate the REFCLK rms phase jitter requirement for PCIe at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f(MHz) = REFCLK rms phase jitter at 100 MHz \times 100/f.

Typical VOD Settings


The tolerance is +/-20% for all VOD settings ex	cept for settings 2 and below	r.		
Symbol	V _{OD} Setting	V _{OD} Value (mV)	V _{OD} Setting	V _{OD} Value (mV)
	0 (166)	0	32	640
	1 ⁽¹⁶⁶⁾	20	33	660
	2(166)	40	34	680
	3(166)	60	35	700
	4 ⁽¹⁶⁶⁾	80	36	720
	5 ⁽¹⁶⁶⁾	100	37	740
	6	120	38	760
$ m V_{OD}$ differential peak to peak typical	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920

⁽¹⁶⁶⁾ If TX termination resistance = 100 Ω , this VOD setting is illegal.

Figure 2-2: AC Gain Curves for Arria V GZ Channels (full bandwidth)

Altera Corporation

AV-51002 2017.02.10

Symbol	Parameter	Min	Тур	Мах	Unit
t _{INCCJ} ⁽¹⁷¹⁾ , ⁽¹⁷²⁾	Input clock cycle-to-cycle jitter (f_{REF} $\geq 100~MHz)$	—	_	0.15	UI (p-p)
'INCCJ , , , , ,	Input clock cycle-to-cycle jitter ($f_{REF} < 100 \text{ MHz}$)	-750		+750	ps (p-p)
t _{outpj_dc} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
COUTPJ_DC	Period Jitter for dedicated clock output in integer PLL (f _{OUT} < 100 Mhz)	—		17.5	mUI (p-p)
(173)	Period Jitter for dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	_		$250^{(176)}, \\ 175^{(174)}$	ps (p-p)
t _{FOUTPJ_DC} ⁽¹⁷³⁾	Period Jitter for dedicated clock output in fractional PLL (f _{OUT} < 100 MHz)	—		$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)
tournoon = c (173)	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		175	ps (p-p)
t _{OUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in integer PLL ($f_{OUT} < 100 \text{ MHz}$)	_		17.5	mUI (p-p)
t _{FOUTCCJ_DC} ⁽¹⁷³⁾	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} \ge 100 \text{ MHz}$)	—		250 ⁽¹⁷⁶⁾ , 175 ⁽¹⁷⁴⁾	ps (p-p)
	Cycle-to-cycle Jitter for a dedicated clock output in fractional PLL ($f_{OUT} < 100 \text{ MHz}$)			$25^{(176)}$, 17.5 ⁽¹⁷⁴⁾	mUI (p-p)

⁽¹⁷¹⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps. ⁽¹⁷²⁾ The f_{REF} is fIN/N specification applies when N = 1.

⁽¹⁷⁴⁾ This specification only covered fractional PLL for low bandwidth. The f_{VCO} for fractional value range 0.20–0.80 must be \geq 1200 MHz.

⁽¹⁷³⁾ Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in the "Worst-Case DCD on Arria V GZ I/O Pins" table.

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 2-8: FPP Configuration Timing Waveform When the DCLK-to-DATA[] Ratio is >1,

t_{CF2ST1} tcfg ;↔ nCONFIG ŤĊF2CK nSTATUS (3) 🕳 tstatus tCF2ST0 CONF_DONE (4) TCL tCH tsT2CK ŤĊF2CD (8) DCLK (6) (7) 1 2 ••• r 2 ••• r 1 \mathbf{D} (5) tCLK DATA[31..0] (8) Word 0 Word User Mode Word 3 • • • Word (n-1) tDH tDH tpsy High-Z User I/O User Mode INIT DONE (9) tCD2UM

Timing when using a MAX II device, MAX V device, or microprocessor as an external host.

Notes:

- 1. To find out the DCLK-to-DATA[] ratio for your system, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 2. The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- 3. After power-up, the Arria V GZ device holds nSTATUS low for the time as specified by the POR delay.
- 4. After power-up, before and during configuration, CONF_DONE is low.
- 5. Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required.
- 6. "r" denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the "DCLK-to-DATA[] Ratio for Arria V GZ Devices" table.
- 7. If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[31.0] pins prior to sending the first DCLK rising edge.
- 8. To ensure a successful configuration, send the entire configuration data to the Arria V GZ device. CONF_DONE is released high after the Arria V GZ device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- 9. After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output		4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	—	ns
t _H	Data hold time after falling edge on DCLK	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode (216)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × Clkusr period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

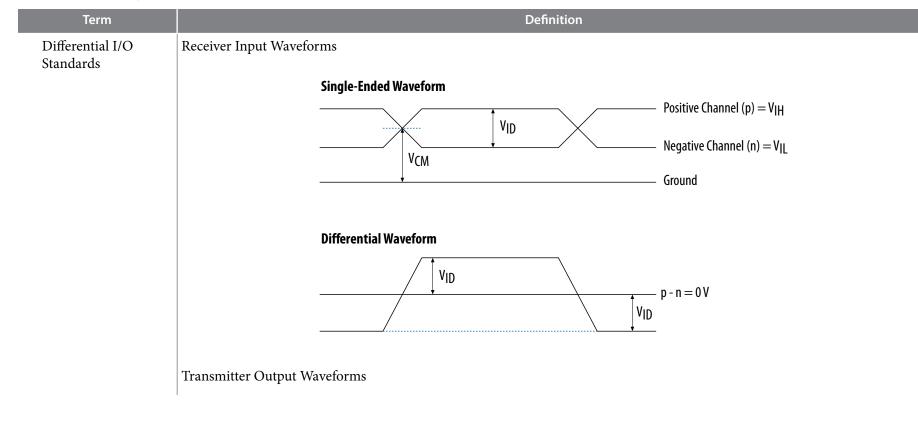
This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices



⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Glossary

Table 2-68: Glossary

