
E·XFL

Intel - 5AGZME3H3F35C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	16980
Number of Logic Elements/Cells	360000
Total RAM Bits	23946240
Number of I/O	414
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme3h3f35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• Transceiver Specifications for Arria V GT and ST Devices on page 1-29 Provides the specifications for transmitter, receiver, and reference clock I/O pin.

Switching Characteristics

This section provides performance characteristics of Arria V core and periphery blocks.

Transceiver Performance Specifications

Transceiver Specifications for Arria V GX and SX Devices

Table 1-20: Reference Clock Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4		Transc	irade 6	Unit		
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	onic
Supported I/O standards	1.2 V PCM	L, 1.4 V PCN	IL,1.5 V PCML	, 2.5 V PCMI	L, Differentia	l LVPECL ⁽²³⁾ ,	HCSL, and	LVDS
Input frequency from REFCLK input pins	_	27		710	27		710	MHz
Rise time	Measure at ±60 mV of differential signal ⁽²⁴⁾			400			400	ps
Fall time	Measure at $\pm 60 \text{ mV}$ of differential signal ⁽²⁴⁾	_		400			400	ps
Duty cycle		45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	300 ⁽²⁵⁾ / 2000	200		300 ⁽²⁵⁾ / 2000	mV

⁽²³⁾ Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

REFCLK performance requires to meet transmitter REFCLK phase noise specification. (24)

⁽²⁵⁾ The maximum peak-to peak differential input voltage of 300 mV is allowed for DC coupled link.

Sumbol/Decovintion	Condition	Transc	eiver Speed G	irade 4	Transc	eiver Speed G	Grade 6	Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Minimum differential eye opening at the receiver serial input pins ⁽³⁰⁾	_	100	_	_	100	_	_	mV
V _{ICM} (AC coupled)	_	_	0.7/0.75/ 0.8 ⁽³¹⁾	_	_	0.7/0.75/ 0.8 ⁽³¹⁾		mV
V _{ICM} (DC coupled)	$\leq 3.2 \text{Gbps}^{(32)}$	670	700	730	670	700	730	mV
	85- Ω setting		85	—		85	_	Ω
Differential on-chip	100- Ω setting		100	_		100		Ω
termination resistors	120-Ω setting		120	—		120		Ω
	150-Ω setting		150	_		150		Ω
t _{LTR} ⁽³³⁾		_	_	10	_	_	10	μs
$t_{LTD}^{(34)}$	_	4	_	_	4	_	_	μs
t _{LTD_manual} ⁽³⁵⁾	_	4	_	—	4	_	_	μs
t _{LTR_LTD_manual} ⁽³⁶⁾		15	_		15			μs
Programmable ppm detector ⁽³⁷⁾	_	±62.5, 100, 125, 200, 250, 300, 500, and 1000					ppm	

⁽³⁰⁾ The differential eye opening specification at the receiver input pins assumes that you have disabled the **Receiver Equalization** feature. If you enable the **Receiver Equalization** feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(31) The AC coupled $V_{ICM} = 700 \text{ mV}$ for Arria V GX and SX in PCIe mode only. The AC coupled $V_{ICM} = 750 \text{ mV}$ for Arria V GT and ST in PCIe mode only.

⁽³²⁾ For standard protocol compliance, use AC coupling.

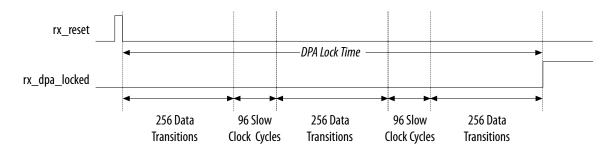
 $^{(33)}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{(34)}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

 $^{(35)}$ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

	Symbol	Condition		-I3, -C4			–I5, –C5		-C6			Unit
	Symbol	Condition	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Onit
	TCCS	True Differential I/O Standards	_	_	150	_	_	150	_	_	150	ps
	1003	Emulated Differential I/O Standards	_	_	300	_	_	300		_	300	ps
	True Differential I/O Standards - f _{HSDRDPA}	SERDES factor J =3 to $10^{(76)}$	150		1250	150	_	1250	150		1050	Mbps
	(data rate)	SERDES factor $J \ge 8$ with DPA ⁽⁷⁶⁾⁽⁷⁸⁾	150	_	1600	150	_	1500	150	_	1250	Mbps
Receiver		SERDES factor J = 3 to 10	(77)	_	(83)	(77)	_	(83)	(77)	_	(83)	Mbps
	f _{HSDR} (data rate)	SERDES factor J = 1 to 2, uses DDR registers	(77)		(79)	(77)		(79)	(77)		(79)	Mbps
DPA Mode	DPA run length	_	—	_	10000	_	_	10000	_	_	10000	UI
Soft-CDR Mode	Soft-CDR ppm tolerance	_	_	_	300	_	_	300	_	_	300	±ppm
Non-DPA Mode	Sampling Window	_		_	300	_	_	300		_	300	ps


Arria V GX, GT, SX, and ST Device Datasheet

⁽⁸³⁾ You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition
SPI-4	0000000001111111111	2	128	640
Parallel Rapid I/O	00001111	2	128	640
r araner Rapid 1/0	10010000	4	64	640
Miscellaneous	10101010	8	32	640
wiscenaneous	01010101	8	32	640

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Memory Output Clock Jitter Specifications

Table 1-45: Memory Output Clock Jitter Specifications for Arria V Devices

The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard. The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) 10^{-12} , equivalent to 14 sigma. Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections for better jitter performance.

Parameter	Clock Network	Symbol	-I3,	-C4	–15,	-C5	-(6	Unit
Falanietei		Symbol	Min	Max	Min	Max	Min	Max	Ont
Clock period jitter	PHYCLK	t _{JIT(per)}	-41	41	-50	50	-55	55	ps
Cycle-to-cycle period jitter	PHYCLK	t _{JIT(cc)}	6	3	9	0	9	4	ps

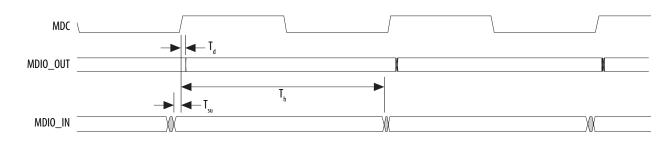
OCT Calibration Block Specifications

Table 1-46: OCT Calibration Block Specifications for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks			20	MHz
T _{OCTCAL}	Number of octus RCLK clock cycles required for R_S OCT/ R_T OCT calibration		1000		Cycles
T _{OCTSHIFT}	Number of octusrclk clock cycles required for oct code to shift out		32		Cycles
T _{RS_RT}	Time required between the dyn_term_ctrl and oe signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT	_	2.5	_	ns

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

The SD/MMC interface calibration support will be available in a future release of the preloader through the SoC EDS software update.


Symbol	Description	Min	Мах	Unit
	SDMMC_CLK clock period (Identification mode)	20	_	ns
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Default speed mode)	5	_	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
	SDMMC_CLK_OUT clock period (Identification mode)	2500	_	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	_	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$\frac{(T_{sdmmc_clk} \times drvsel)/2}{-1.23}$	$\begin{array}{c} (\mathrm{T}_{sdmmc_clk} \times \texttt{drvsel})/2 \\ + 1.69^{\ (87)} \end{array}$	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_clk} \times smplsel)/2^{(88)}$		ns
T _h	Input hold time	$\frac{(T_{sdmmc_clk} \times \texttt{smplsel})}{2^{(88)}}$	—	ns

⁽⁸⁷⁾ drvsel is the drive clock phase shift select value.

⁽⁸⁸⁾ smplsel is the sample clock phase shift select value.

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Symbol Description		d Mode	Fast	Mode	– Unit
Symbol	Description	Min	Max	Min	Max	Onit
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs
T _{clkhigh}	SCL high time	4.7	—	0.6		μs
T _{clklow}	SCL low time	4	_	1.3		μs
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs

1-76 FPGA JTAG Configuration Timing

POR Delay	Minimum	Maximum	Unit
Standard	100	300	ms

Related Information

MSEL Pin Settings

Provides more information about POR delay based on MSEL pin settings for each configuration scheme.

FPGA JTAG Configuration Timing

Table 1-64: FPGA JTAG Timing Parameters and Values for Arria V Devices

Symbol	Description	Min	Мах	Unit
t _{JCP}	TCK clock period	30, 167 ⁽⁹²⁾	_	ns
t _{JCH}	TCK clock high time	14		ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	2		ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3		ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output		12 ⁽⁹³⁾	ns
t _{JPZX}	JTAG port high impedance to valid output		14 ⁽⁹³⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 ⁽⁹³⁾	ns

⁽⁹²⁾ The minimum TCK clock period is 167 ns if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

⁽⁹³⁾ A 1-ns adder is required for each VCCIO voltage step down from 3.0 V. For example, tJPCO= 13 ns if VCCIO of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.

Remote System Upgrades

Table 1-74: Remote System Upgrade Circuitry Timing Specifications for Arria V Devices

Parameter	Minimum	Unit
t _{RU_nCONFIG} ⁽¹¹⁰⁾	250	ns
t _{RU_nRSTIMER} ⁽¹¹¹⁾	250	ns

Related Information

- **Remote System Upgrade State Machine** Provides more information about configuration reset (RU_CONFIG) signal.
- User Watchdog Timer Provides more information about reset_timer (RU_nRSTIMER) signal.

User Watchdog Internal Oscillator Frequency Specifications

Table 1-75: User Watchdog Internal Oscillator Frequency Specifications for Arria V Devices

Parameter	Minimum	Typical	Maximum	Unit
User watchdog internal oscillator frequency	5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O timing and the Quartus Prime Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

⁽¹¹⁰⁾ This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

⁽¹¹¹⁾ This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE IP core high for the minimum timing specification.

Term		Definition					
		Definition					
Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values indicate the voltage levels at which the receiver must meet its timing specifications. T indicate the voltage levels at which the final logic state of the receiver is unambiguously defireceiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. The is intended to provide predictable receiver timing in the presence of input waveform ringing Single-Ended Voltage Referenced I/O Standard						
			V _{CCI0}				
	V _{0Н}	V _{IH(A}					
			VIH(DC)				
		V REF	/ V _{IL(DC)}				
		/	/ V il(AC)				
	V _{0L}						
			V _{SS}				
t _C	High-speed receiver/transmitter i	nput and output clock period.					
TCCS (channel-to-channel-skew)		ne same PLL. The clock is included	ncluding the t _{CO} variation and clock in the TCCS measurement (refer to				
t _{DUTY}	High-speed I/O block—Duty cycl	e on high-speed transmitter outpu	t clock.				

Date	Version	Changes
June 2012	2.0	 Updated for the Quartus II software v12.0 release: Restructured document. Updated "Supply Current and Power Consumption" section. Updated Table 20, Table 21, Table 24, Table 25, Table 26, Table 35, Table 39, Table 43, and Table 52. Added Table 22, Table 23, and Table 33. Added Figure 1–1 and Figure 1–2. Added "Initialization" and "Configuration Files" sections.
February 2012	1.3	 Updated Table 2–1. Updated Transceiver-FPGA Fabric Interface rows in Table 2–20. Updated V_{CCP} description.
December 2011	1.2	Updated Table 2–1 and Table 2–3.
November 2011	1.1	 Updated Table 2–1, Table 2–19, Table 2–26, and Table 2–36. Added Table 2–5. Added Figure 2–4.
August 2011	1.0	Initial release.

Transceiver Power Supply Requirements

Table 2-7: Transceiver Power Supply Voltage Requirements for Arria V GZ Devices

Conditions	VCCR_GXB and VCCT_GXB ⁽¹²²⁾	VCCA_GXB	VCCH_GXB	Unit
If BOTH of the following conditions are true:	1.05			
 Data rate > 10.3 Gbps. DFE is used. 				
If ANY of the following conditions are true ⁽¹²³⁾ :	1.0	3.0		
 ATX PLL is used. Data rate > 6.5Gbps. DFE (data rate ≤ 10.3 Gbps), AEQ, or EyeQ feature is used. 			1.5	V
If ALL of the following conditions are true:	0.85	2.5		
 ATX PLL is not used. Data rate ≤ 6.5Gbps. DFE, AEQ, and EyeQ are not used. 				

DC Characteristics

Supply Current

Standby current is the current drawn from the respective power rails used for power budgeting.

Use the Excel-based Early Power Estimator (EPE) to get supply current estimates for your design because these currents vary greatly with the resources you use.

Send Feedback

⁽¹²²⁾ If the VCCR_GXB and VCCT_GXB supplies are set to 1.0 V or 1.05 V, they cannot be shared with the VCC core supply. If the VCCR_GXB and VCCT_GXB are set to 0.85 V, they can be shared with the VCC core supply.

⁽¹²³⁾ Choose this power supply voltage requirement option if you plan to upgrade your design later with any of the listed conditions.

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard		V _{CCIO} (V)		V _{SWIN}	_{G(DC)} (V)	V _{X(AC)} (V)				V _{SWING(AC)} (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175		V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	—	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30	

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)			$V_{X(AC)}(V)$		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68	_	0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Symbol/Description	Conditions	Transc	eiver Speed	Grade 2	Transce	eiver Speed	Grade 3	Unit
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
Rise time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾	_	_	400	_	_	400	20
Fall time	Measure at ±60 mV of differential signal ⁽¹³⁸⁾		_	400			400	ps
Duty cycle	—	45	_	55	45		55	%
Spread-spectrum modulating clock frequency	PCI Express [®] (PCIe)	30	_	33	30		33	kHz
Spread-spectrum downspread	PCIe		0 to	_	_	0 to	—	%
			-0.5			-0.5		
On-chip termination resistors	—		100	_		100		Ω
Absolute V _{MAX}	Dedicated reference clock pin		_	1.6			1.6	V
	RX reference clock pin		_	1.2			1.2	
Absolute V _{MIN}	—	-0.4	_	_	-0.4			V
Peak-to-peak differential input voltage	-	200	-	1600	200		1600	mV
V _{ICM} (AC coupled)	Dedicated reference clock pin	10	00/900/850	(139)	10	mV		
· • ·	RX reference clock pin	1.	.0/0.9/0.85 (140)	1.	.0/0.9/0.85(1	40)	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250		550	mV

 ⁽¹³⁸⁾ REFCLK performance requires to meet transmitter REFCLK phase noise specification.
 (139) The reference clock common mode voltage is equal to the V_{CCR_GXB} power supply level.
 (140) This supply follows VCCR_GXB

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit			
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max		
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V	
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$	_	_	1.8	_		1.8	V	
device configuration ⁽¹⁴⁶⁾	$V_{CCR_GXB} = 0.85 V$ $(V_{ICM} = 0.6 V)$		_	2.4	_	_	2.4	V	
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85	_	_	85	_		mV	
	85– Ω setting		85 ± 30%	_	_	85 ± 30%	_	Ω	
Differential on-chip termination	100– Ω setting		100 ± 30%		_	100 ± 30%		Ω	
resistors	120– Ω setting	—	120 ± 30%		—	120 ± 30%		Ω	
	150– Ω setting	_	150 ± 30%		_	150 ± 30%		Ω	

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	ed Grade 3	Unit	
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Мах	
	$V_{CCR_GXB} = 0.85 V$ full bandwidth	_	600	_	_	600	_	mV
V (AC and DC coupled)	$V_{CCR_{GXB}} = 0.85 V$ half bandwidth	_	600		_	600	_	mV
$\rm V_{ICM}$ (AC and DC coupled)	$V_{CCR_{GXB}} = 1.0 V$ full bandwidth		700	_		700	_	mV
	$V_{CCR_{GXB}} = 1.0 V$ half bandwidth		700	_		700	_	mV
t _{LTR} ⁽¹⁴⁹⁾	—	_	_	10	_	_	10	μs
t _{LTD} ⁽¹⁵⁰⁾	_	4			4	_		μs
t _{LTD_manual} ⁽¹⁵¹⁾	—	4	_		4	_		μs
t _{LTR_LTD_manual} ⁽¹⁵²⁾	_	15			15	_		μs
Programmable equalization (AC Gain)	Full bandwidth (6.25 GHz) Half bandwidth (3.125 GHz)			16		_	16	dB

2-26

Receiver

 $^{^{(149)}}$ t_{LTR} is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $^{^{(150)}}$ t_{LTD} is time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high.

⁽¹⁵¹⁾ t_{LTD_manual} is the time required for the receiver CDR to start recovering valid data after the rx_is_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{\text{LTR_LTD_manual}}$ is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx_is_lockedtoref signal goes high when the CDR is functioning in the manual mode.

2-64 FPP Configuration Timing when DCLK to DATA[] > 1

Symbol	Parameter	Minimum	Maximum	Unit
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	—	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) (215)	—	—

Related Information

- DCLK-to-DATA[] Ratio (r) for FPP Configuration on page 2-57
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices

⁽²¹⁵⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on these pins, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to AS_DATA0/ASDO output		4	ns
t _{SU}	Data setup time before falling edge on DCLK	1.5	—	ns
t _H	Data hold time after falling edge on DCLK	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode (216)	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (8576 × Clkusr period)	_	_

Table 2-59: DCLK Frequency Specification in the AS Configuration Scheme

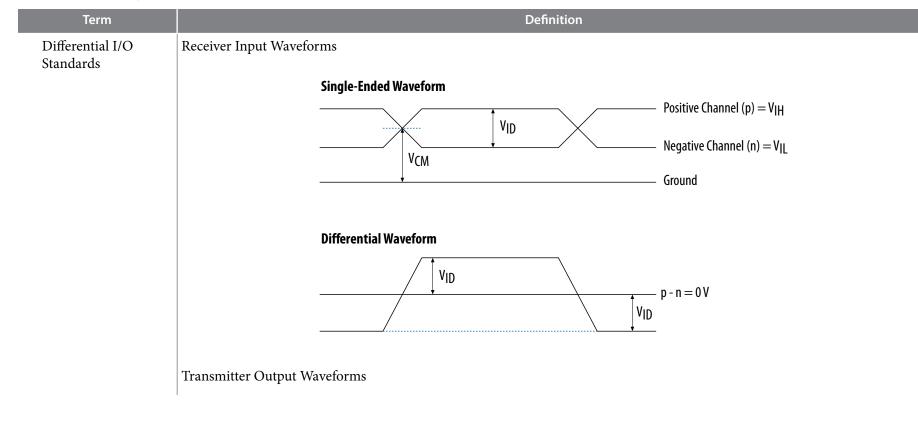
This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

The AS multi-device configuration scheme does not support ${\tt DCLK}$ frequency of 100 MHz.

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Related Information

- Passive Serial Configuration Timing on page 2-67
- Configuration, Design Security, and Remote System Upgrades in Arria V Devices



⁽²¹⁶⁾ To enable the CLKUSR pin as the initialization clock source and to obtain the maximum frequency specification on this pin, refer to the "Initialization" section of the *Configuration, Design Security, and Remote System Upgrades in Arria V Devices* chapter.

Glossary

Table 2-68: Glossary

Date	Version	Changes	
July 2014	3.8	 Updated Table 21. Updated Table 22 V_{OCM} (DC Coupled) condition. Updated the DCLK note to Figure 6, Figure 7, and Figure 9. Added note to Table 5 and Table 6. Added the DCLK specification to Table 50. Added note to Table 51. Updated the list of parameters in Table 53. 	
February 2014	3.7	Updated Table 28.	
December 2013	3.6	 Updated Table 2, Table 13, Table 18, Table 19, Table 22, Table 30, Table 33, Table 37, Table 38, Table 45, Table 46, Table 47, Table 56, Table 49. Updated "PLL Specifications". 	
August 2013	3.5	Updated Table 28.	
August 2013	3.4	 Removed Preliminary tags for Table 2, Table 4, Table 5, Table 14, Table 27, Table 28, Table 29, Table 31, Table 32, Table 43, Table 45, Table 46, Table 47, Table 48, Table 49, Table 50, and Table 54. Updated Table 2 and Table 28. 	
June 2013	3.3	Updated Table 23, Table 28, Table 51, and Table 55.	
May 2013	3.2	 Added Table 23. Updated Table 5, Table 22, Table 26, and Table 57. Updated Figure 6, Figure 7, Figure 8, and Figure 9. 	
March 2013	3.1	 Updated Table 2, Table 6, Table 7, Table 8, Table 19, Table 22, Table 26, Table 29, Table 52. Updated "Maximum Allowed Overshoot and Undershoot Voltage". 	
December 2012	3.0	Initial release.	

