E·XFL

Intel - 5AGZME5H2F35C3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	18870
Number of Logic Elements/Cells	400000
Total RAM Bits	34322432
Number of I/O	534
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme5h2f35c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution: Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1-1: Absolute Maximum Ratings for Arria V Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage power supply	-0.50	1.43	V
V _{CCP}	Periphery circuitry, PCIe [®] hardIP block, and transceiver physical coding sublayer (PCS) power supply	-0.50	1.43	V
V _{CCPGM}	Configuration pins power supply	-0.50	3.90	V
V _{CC_AUX}	Auxiliary supply	-0.50	3.25	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.50	3.90	V
V _{CCPD}	I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO}	I/O power supply	-0.50	3.90	V
V _{CCD_FPLL}	Phase-locked loop (PLL) digital power supply	-0.50	1.80	V
V _{CCA_FPLL}	PLL analog power supply	-0.50	3.25	V
V _{CCA_GXB}	Transceiver high voltage power	-0.50	3.25	V
V _{CCH_GXB}	Transmitter output buffer power	-0.50	1.80	V
V _{CCR_GXB}	Receiver power	-0.50	1.50	V
V _{CCT_GXB}	Transmitter power	-0.50	1.50	V
V _{CCL_GXB}	Transceiver clock network power	-0.50	1.50	V
VI	DC input voltage	-0.50	3.80	V
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	-0.50	1.43	V
V _{CCPD_HPS}	HPS I/O pre-driver power supply	-0.50	3.90	V
V _{CCIO_HPS}	HPS I/O power supply	-0.50	3.90	V
V _{CCRSTCLK_HPS}	HPS reset and clock input pins power supply	-0.50	3.90	V

Symbol	Description	Maximum	Unit
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50	mA

Internal Weak Pull-Up Resistor

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up.

Table 1-13: Internal Weak Pull-Up Resistor Values for Arria V Devices

Symbol	Description	Condition (V) ⁽¹¹⁾	Value ⁽¹²⁾	Unit
		$V_{CCIO} = 3.3 \pm 5\%$	25	kΩ
	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if you have enabled the programmable pull-up resistor option.	$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCIO} = 2.5 \pm 5\%$	25	kΩ
D		$V_{CCIO} = 1.8 \pm 5\%$	25	kΩ
Кру		$V_{CCIO} = 1.5 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.35 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.25 \pm 5\%$	25	kΩ
		$V_{CCIO} = 1.2 \pm 5\%$	25	kΩ

Related Information

Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.

⁽¹⁰⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{IOPIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

 $^{^{(11)}}$ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

⁽¹²⁾ Valid with $\pm 10\%$ tolerances to cover changes over PVT.

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min Typ Max		ome	
	85-Ω setting	—	85	—	Ω
Differential on-chip termination	100- Ω setting		100		Ω
resistors	120-Ω setting	—	120		Ω
	150-Ω setting		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps			15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode			180	ps
Inter-transceiver block transmitter channel-to-channel skew ⁽⁵⁵⁾	× <i>N</i> PMA bonded mode			500	ps

Table 1-30: CMU PLL Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit
Symbol/Description	Min	Max	Onit
Supported data range	0.611	10.3125	Gbps
fPLL supported data range	611	3125	Mbps

⁽⁵⁵⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

Protocol	Sub-protocol	Data Rate (Mbps)
	SONET 155	155.52
SONET	SONET 622	622.08
	SONET 2488	2,488.32
	GPON 155	155.52
Gigabit-capable passive optical network (GPON)	GPON 622	622.08
Orgabil-Capable passive optical network (Or ON)	GPON 1244	1,244.16
	GPON 2488	2,488.32
QSGMII	QSGMII 5000	5,000

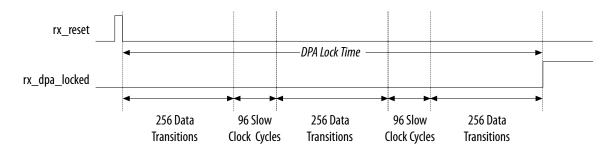
Core Performance Specifications

Clock Tree Specifications

Table 1-35: Clock Tree Specifications for Arria V Devices

Parameter		Performance	Unit	
Falanetei	–I3, –C4	–I5, –C5	-C6	Onic
Global clock and Regional clock	625	625	525	MHz
Peripheral clock	450	400	350	MHz

PLL Specifications


Table 1-36: PLL Specifications for Arria V Devices

This table lists the Arria V PLL block specifications. Arria V PLL block does not include HPS PLL.

DPA Lock Time Specifications

Figure 1-4: Dynamic Phase Alignment (DPA) Lock Time Specifications with DPA PLL Calibration Enabled

Table 1-41: DPA Lock Time Specifications for Arria V Devices

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions ⁽⁸⁴⁾	Maximum Data Transition
SPI-4	0000000001111111111	2	128	640
Parallel Rapid I/O	00001111	2	128	640
Parallel Rapid I/O	10010000	4	64	640
Miscellaneous	10101010	8	32	640
wiscenaneous	01010101	8	32	640

⁽⁸⁴⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

HPS PLL Input Jitter

Use the following equation to determine the maximum input jitter (peak-to-peak) the HPS PLLs can tolerate. The divide value (N) is the value programmed into the denominator field of the VCO register for each PLL. The PLL input reference clock is divided by this value. The range of the denominator is 1 to 64.

Maximum input jitter = Input clock period × Divide value (N) × 0.02

Table 1-50: Examples of Maximum Input Jitter

Input Reference Clock Period	Divide Value (N)	Maximum Jitter	Unit
40 ns	1	0.8	ns
40 ns	2	1.6	ns
40 ns	4	3.2	ns

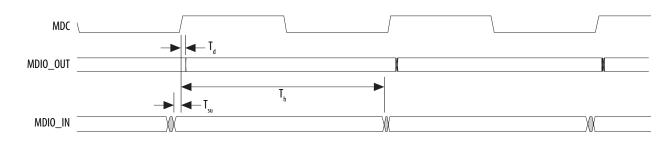

Quad SPI Flash Timing Characteristics

Table 1-51: Quad Serial Peripheral Interface (SPI) Flash Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Мах	Unit
F _{clk}	SCLK_OUT clock frequency (External clock)	—	_	108	MHz
T _{qspi_clk}	QSPI_CLK clock period (Internal reference clock)	2.32	_		ns
T _{dutycycle}	SCLK_OUT duty cycle	45		55	%
T _{dssfrst}	Output delay QSPI_SS valid before first clock edge		1/2 cycle of SCLK_OUT		ns
T _{dsslst}	Output delay QSPI_SS valid after last clock edge	-1		1	ns
T _{dio}	I/O data output delay	-1		1	ns
T _{din_start}	Input data valid start			$(2 + R_{delay}) \times T_{qspi_clk} - 7.52^{(85)}$	ns

Figure 1-15: MDIO Timing Diagram

I²C Timing Characteristics

Table 1-59: I²C Timing Requirements for Arria V Devices

Symbol	Description	Standard Mode		Standard Mode Fast Mode		Unit
Symbol	Description	Min	Min Max	Min	Max	Onit
T _{clk}	Serial clock (SCL) clock period	10	—	2.5	_	μs
T _{clkhigh}	SCL high time	4.7	—	0.6		μs
T _{clklow}	SCL low time	4	_	1.3		μs
T _s	Setup time for serial data line (SDA) data to SCL	0.25	—	0.1	—	μs
T _h	Hold time for SCL to SDA data	0	3.45	0	0.9	μs
T _d	SCL to SDA output data delay	—	0.2	_	0.2	μs
T _{su_start}	Setup time for a repeated start condition	4.7	_	0.6	_	μs
T _{hd_start}	Hold time for a repeated start condition	4	—	0.6	_	μs
T _{su_stop}	Setup time for a stop condition	4	—	0.6	—	μs

Related Information

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

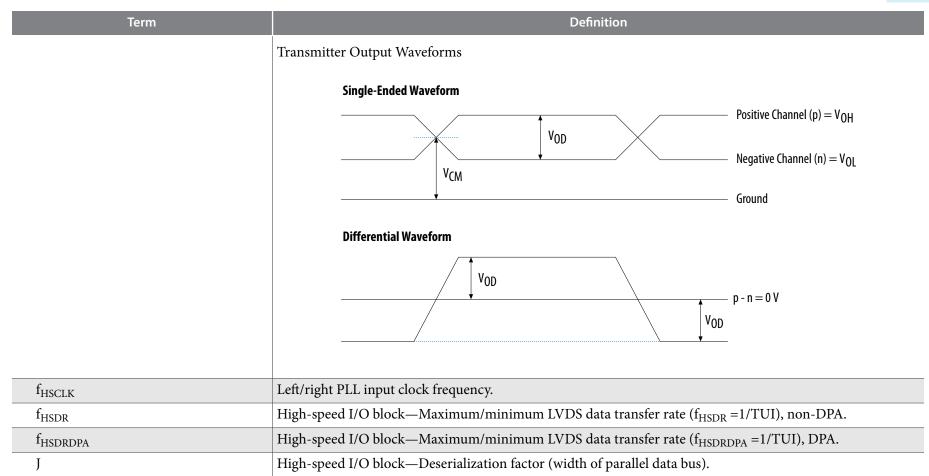
DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

Parameter	Minimum	Typical	Maximum	Unit
DCLK frequency in AS configuration scheme	5.3	7.9	12.5	MHz
	10.6	15.7	25.0	MHz
Bellk frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing


Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.

⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

Term	Definition
t _{FALL}	Signal high-to-low transition time (80–20%)
t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input
t _{OUTPJ_IO}	Period jitter on the GPIO driven by a PLL
t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL
t _{RISE}	Signal low-to-high transition time (20–80%)
Timing Unit Interval (TUI)	The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/$ (Receiver Input Clock Frequency Multiplication Factor) = t_C/w)
V _{CM(DC)}	DC common mode input voltage.
V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V _{IH(AC)}	High-level AC input voltage
V _{IH(DC)}	High-level DC input voltage
V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
V _{IL(AC)}	Low-level AC input voltage
V _{IL(DC)}	Low-level DC input voltage
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Date	Version	Changes
June 2012	2.0	 Updated for the Quartus II software v12.0 release: Restructured document. Updated "Supply Current and Power Consumption" section. Updated Table 20, Table 21, Table 24, Table 25, Table 26, Table 35, Table 39, Table 43, and Table 52. Added Table 22, Table 23, and Table 33. Added Figure 1–1 and Figure 1–2. Added "Initialization" and "Configuration Files" sections.
February 2012	1.3	 Updated Table 2–1. Updated Transceiver-FPGA Fabric Interface rows in Table 2–20. Updated V_{CCP} description.
December 2011	1.2	Updated Table 2–1 and Table 2–3.
November 2011	1.1	 Updated Table 2–1, Table 2–19, Table 2–26, and Table 2–36. Added Table 2–5. Added Figure 2–4.
August 2011	1.0	Initial release.

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
		0.82	0.85	0.88		
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V	
		1.03	1.05	0.85 0.88 1.0 1.03		
		0.82	0.85	0.88		
V _{CCR_GXBR} ⁽¹²¹⁾	Receiver analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
		0.82	0.85	0.88		
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V	
		1.03	1.05	1.07		
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V	
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V	

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

AV-51002 2017.02.10

I/O Standard	V _{IL(D}	_{C)} (V)	V _{IH(D0}	_{_)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{OL} (V)	V _{OH} (V)	L (m A)	I (m A)
I/O Standard	Min	Max	Min	Max	Max	Min	Max	Min	l _{ol} (mA)	l _{oh} (mA)
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCIO} + 0.3	V _{REF} – 0.25	V _{REF} + 0.25	0.28	V _{CCIO} – 0.28	13.4	-13.4
SSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{ m CCIO}$	$0.8 \times V_{ m CCIO}$	8	-8
SSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	—	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{\rm CCIO}$	$0.8 \times V_{ m CCIO}$	16	-16
SSTL-135 Class I, II		V _{REF} – 0.09	V _{REF} + 0.09	_	V _{REF} – 0.16	V _{REF} + 0.16	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	—
SSTL-125 Class I, II	_	V _{REF} – 0.85	V _{REF} + 0.85	—	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	—
SSTL-12 Class I, II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.15	V _{REF} + 0.15	0.2 * V _{CCIO}	0.8 * V _{CCIO}	—	_
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	V _{REF} – 0.2	V _{REF} + 0.2	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{\rm CCIO}$	$0.75 \times V_{ m CCIO}$	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{\rm CCIO}$	$0.75 \times V_{ m CCIO}$	16	-16
HSUL-12	—	V _{REF} – 0.13	V _{REF} + 0.13	—	V _{REF} – 0.22	V _{REF} + 0.22	$0.1 \times V_{\rm CCIO}$	$0.9 \times V_{ m CCIO}$	—	—

Arria V GZ Device Datasheet

Altera Corporation

AV-51002 2017.02.10

Symbol/Description	Conditions	Trans	Transceiver Speed Grade 2			Transceiver Speed Grade 3		
Symbol/Description	Conditions	Min	Тур	Мах	Transceiver Speed Grade 3 Min Typ Max - - 1.6 - - 1.6 - - 1.8 - - 2.4 85 - - - 85 - - 85 - - 100 - $\pm 30\%$ - 1 - 120 - - - 150 - 1 - 150 - -	Unit		
Maximum peak-to-peak differential input voltage V_{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after	$V_{CCR_GXB} = 1.0 V$ $(V_{ICM} = 0.75 V)$	_	_	1.8	_		1.8	V
device configuration ⁽¹⁴⁶⁾	MinTypMaxMinTypMaxo-peak differential (diff p-p) before on $ -$ <td>V</td>	V						
Minimum differential eye opening at receiver serial input pins ⁽¹⁴⁷⁾⁽¹⁴⁸⁾	_	85	_	_	85	_		mV
	85– Ω setting		85 ± 30%	_	_		_	Ω
Differential on-chip termination	100– Ω setting				_			Ω
resistors	120– Ω setting	—			—			Ω
	150– Ω setting	_	150 ± 30%		_			Ω

⁽¹⁴⁶⁾ The maximum peak to peak differential input voltage V_{ID} after device configuration is equal to 4 × (absolute V_{MAX} for receiver pin - V_{ICM}).

⁽¹⁴⁷⁾ The differential eye opening specification at the receiver input pins assumes that **Receiver Equalization** is disabled. If you enable **Receiver Equalization**, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

⁽¹⁴⁸⁾ Minimum eye opening of 85 mV is only for the unstressed input eye condition.

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Symbol/Description Conditions	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
	Conditions	Min	Тур	Max	Min	Тур	Мах	Offic
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} ⁽¹⁵³⁾	_	1	_		1	_		μs
t _{pll_lock} ⁽¹⁵⁴⁾	_		—	10	_		10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

Altera Corporation

 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width. (153)

⁽¹⁵⁴⁾ $t_{\text{pll} \text{ lock}}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Symbol/Description	Conditions	Transceiver Speed Grade 2			Transceiver Speed Grade 3			Unit
Symbol/Description	Conditions	Min	Тур	Мах	Min	Тур	Max 3250/ 3125 (158) —	Onic
Supported data range	_	600		3250/ 3125 ⁽¹⁵⁸⁾	600	_		Mbps
t _{pll_powerdown} ⁽¹⁵⁹⁾	_	1			1	_		μs
t _{pll_lock} ⁽¹⁶⁰⁾				10			10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

Clock Network Data Rate

Table 2-29: Clock Network Maximum Data Rate Transmitter Specifications

Valid data rates below the maximum specified in this table depend on the reference clock frequency and the PLL counter settings. Check the MegaWizard message during the PHY IP instantiation.

Clock Network	ATX PLL			CMU PLL ⁽¹⁶¹⁾			fPLL			
	Non-bonded Mode (Gbps)	Bonded Mode (Gbps)		Non-bonded Mode (Gbps)	Bonded Mode (Gbps)		Non-bonded Mode (Gbps)	Bonded Mode (Gbps)	Channel Span	
x1 ⁽¹⁶²⁾	12.5	_	6	12.5	_	6	3.125	_	3	
x6 ⁽¹⁶²⁾	_	12.5	6	_	12.5	6	_	3.125	6	
x6 PLL Feedback ⁽¹⁶³⁾	_	12.5	Side-wide	_	12.5	Side-wide	_		_	

⁽¹⁵⁸⁾ When you use fPLL as a TXPLL of the transceiver.

 $^{^{(159)}}$ t_{pll_powerdown} is the PLL powerdown minimum pulse width.

⁽¹⁶⁰⁾ $t_{pll \ lock}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

⁽¹⁶¹⁾ ATX PLL is recommended at 8 Gbps and above data rates for improved jitter performance.

⁽¹⁶²⁾ Channel span is within a transceiver bank.

⁽¹⁶³⁾ Side-wide channel bonding is allowed up to the maximum supported by the PHY IP.

2-42 Memory Block Specifications

Mode	Performar	nce		Unit
imoue	C3, I3L	C4	14	Onit
One sum of two 27×27	380	300 290		MHz
One sum of two 36×18	380	30	MHz	
One complex 18 × 18	400	35	MHz	
One 36 × 36	380	30	MHz	
Modes using Three DSP Blocks		•		
One complex 18 × 25	340	275 265		MHz
Modes using Four DSP Blocks				
One complex 27×27	350	31	MHz	

Memory Block Specifications

Table 2-36: Memory Block Performance Specifications for Arria V GZ Devices

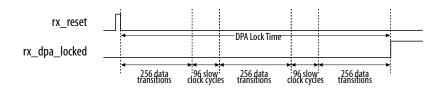
To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50%** output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in F_{MAX}.

Memory	Mode	Resou	rces Used		Unit			
Memory	Moue	ALUTs	Memory	C3	C4	I3L	14	
MLAB	Single port, all supported widths	0	1	400	315	400	315	MHz
	Simple dual-port, x32/x64 depth	0	1	400	315	400	315	MHz
	Simple dual-port, x16 depth (178)	0	1	533	400	533	400	MHz
	ROM, all supported widths	0	1	500	450	500	450	MHz

⁽¹⁷⁸⁾ The F_{MAX} specification is only achievable with Fitter options, **MLAB Implementation In 16-Bit Deep Mode** enabled.

DPA Mode High-Speed I/O Specifications


Table 2-42: High-Speed I/O Specifications for Arria V GZ Devices

When J = 3 to 10, use the serializer/deserializer (SERDES) block.

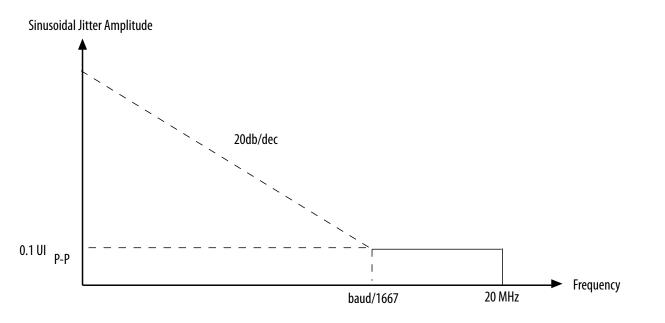
When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Мах	Min	Тур	Max	Onic
DPA run length	—	_	_	10000	_		10000	UI

Figure 2-3: DPA Lock Time Specification with DPA PLL Calibration Enabled

Table 2-43: DPA Lock Time Specifications for Arria V GZ Devices

The DPA lock time is for one channel.


One data transition is defined as a 0-to-1 or 1-to-0 transition.

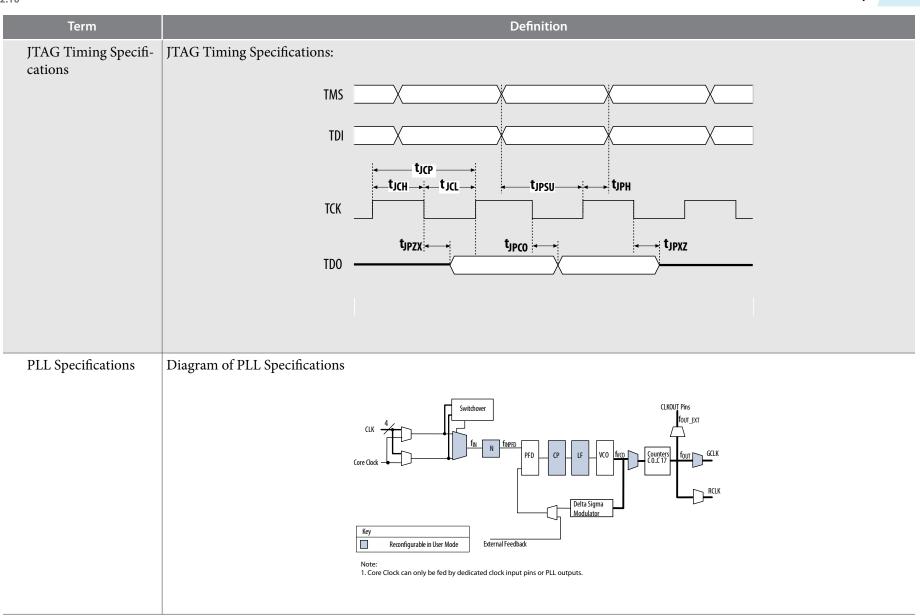
The DPA lock time stated in this table applies to both commercial and industrial grade.

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions (201)	Maximum	
SPI-4	0000000001111111111	2	128	640 data transitions	

⁽²⁰¹⁾ This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Non DPA Mode High-Speed I/O Specifications

Table 2-46: High-Speed I/O Specifications for Arria V GZ Devices


When J = 3 to 10, use the serializer/deserializer (SERDES) block.

When J = 1 or 2, bypass the SERDES block.

Symbol	Conditions	C3, I3L			C4, I4			Unit
		Min	Тур	Max	Min	Тур	Мах	Onic
Sampling Window	_			300			300	ps

