E·XFL

Intel - 5AGZME7H3F35I4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	21225
Number of Logic Elements/Cells	450000
Total RAM Bits	40249344
Number of I/O	534
Number of Gates	-
Voltage - Supply	0.82V ~ 0.88V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5agzme7h3f35i4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCPLL_HPS}	HPS PLL analog power supply	-0.50	3.25	V
V _{CC_AUX_SHARED}	HPS auxiliary power supply	-0.50	3.25	V
I _{OUT}	DC output current per pin	-25	40	mA
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 4.00 V can only be at 4.00 V for ~15% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 1.5 years.

Table 1-2: Maximum Allowed Overshoot During Transitions for Arria V Devices

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

1-3

Transceiver Power Supply Operating Conditions

Table '	1-4:	Transceiver	Power S	upply	Operating	Conditions	for Arria V Devices	j
---------	------	-------------	---------	-------	-----------	------------	---------------------	---

Symbol	Description	Minimum ⁽⁵⁾	Typical	Maximum ⁽⁵⁾	Unit
V _{CCA_GXBL}	Transceiver high voltage power (left side)	2 275	2 500	2 625	V
V _{CCA_GXBR}	Transceiver high voltage power (right side)	2.575	2.300	2.025	v
V _{CCR_GXBL}	GX and SX speed grades—receiver power (left side)	1.08/1.12	1 1/1 15(6)	1 14/1 18	V
V _{CCR_GXBR}	GX and SX speed grades—receiver power (right side)	1.00/1.12	1.1/1.13	1.14/1.10	v
V _{CCR_GXBL}	GT and ST speed grades—receiver power (left side)	1 17	1 20	1 23	V
V _{CCR_GXBR}	GT and ST speed grades—receiver power (right side)	1.17	1.20	1.23	v
V _{CCT_GXBL}	GX and SX speed grades—transmitter power (left side)	1.08/1.12	1 1/1 15(6)	1 14/1 18	V
V _{CCT_GXBR}	GX and SX speed grades—transmitter power (right side)	1.00/1.12	1.1/1.15	1.14/1.10	v
V _{CCT_GXBL}	GT and ST speed grades—transmitter power (left side)	1 17	1 20	1 23	V
V _{CCT_GXBR}	GT and ST speed grades—transmitter power (right side)	1.17	1.20	1.23	v
V _{CCH_GXBL}	Transmitter output buffer power (left side)	1 /25	1 500	1 575	V
V _{CCH_GXBR}	Transmitter output buffer power (right side)	1.423	1.300	1.375	v

⁽⁵⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁶⁾ For data rate <=3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to either 1.1-V or 1.15-V power supply. For data rate >3.2 Gbps, connect V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, or V_{CCL_GXBL/R} to a 1.15-V power supply. For details, refer to the Arria V GT, GX, ST, and SX Device Family Pin Connection Guidelines.

AV-51002 2017.02.10

Symbol	Description	Condition	Minimum ⁽⁷⁾	Typical	Maximum ⁽⁷⁾	Unit
	HPS I/O	3.3 V	3.135	3.3	3.465	V
V _{CCPD_HPS} ⁽⁸⁾	pre-driver	3.0 V	2.85	3.0	3.15	V
	DescriptionComparisonHPS I/O pre-driver power supply	2.5 V	2.375	2.5	2.625	V
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
	HPS I/O	2.5 V	2.375	2.5	2.625	V
V _{CCIO_HPS}	buffers power	1.8 V	1.71	1.8	1.89	V
	supply	1.5 V	1.425	1.5	1.575	V
		1.35 V ⁽⁹⁾	1.283	1.35	1.418	V
		1.2 V	1.14	1.2	1.26	V
	HPS reset	3.3 V	3.135	3.3	3.465	V
V	and clock	3.0 V	2.85	3.0	3.15	V
V CCRSTCLK_HPS	power	2.5 V	2.375	2.5	2.625	V
	supply	1.8 V	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V

⁽⁷⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁸⁾ V_{CCPD_HPS} must be 2.5 V when V_{CCIO_HPS} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD_HPS} must be 3.0 V when V_{CCIO_HPS} is 3.0 V. V_{CCPD_HPS} must be 3.3 V when V_{CCIO_HPS} is 3.3 V.

 $^{^{(9)}\,}$ V_{CCIO_HPS} 1.35 V is supported for HPS row I/O bank only.

AV-51002 2017.02.10

Symbol	Description	Condition (\/)	Ca	Unit			
Symbol	Description		-I3, -C4	–I5, –C5	-C6		
60- Ω and 120- Ω R_{T}	Internal parallel termination with calibration (60- Ω and 120- Ω setting)	$V_{CCIO} = 1.2$	-10 to +40	-10 to +40	-10 to +40	%	
25- $\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{s_left_shift}$ setting)	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%	

OCT Without Calibration Resistance Tolerance Specifications

Table 1-9: OCT Without Calibration Resistance Tolerance Specifications for Arria V Devices

This table lists the Arria V OCT without calibration resistance to PVT changes.

Symbol	Description	Condition (V)	Re	Unit		
Symbol	Description		–I3, –C4	–I5, –C5	-C6	Ont
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%
25-Ω R _S	Internal series termination without calibration (25- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%
$25-\Omega R_S$	Internal series termination without calibration (25- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 3.0, 2.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	V _{CCIO} = 1.8, 1.5	±30	±40	±40	%
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCIO} = 1.2$	±35	±50	±50	%
100-Ω R _D	Internal differential termination $(100-\Omega \text{ setting})$	$V_{CCIO} = 2.5$	±25	±40	±40	%

Figure 1-1: Equation for OCT Variation Without Recalibration

$$R_{OCT} = R_{SCAL} \left(1 + \left(\frac{dR}{dT} \times \Delta T \right) \pm \left(\frac{dR}{dV} \times \Delta V \right) \right)$$

The definitions for the equation are as follows:

- The R_{OCT} value calculated shows the range of OCT resistance with the variation of temperature and V_{CCIO}.
- R_{SCAL} is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

OCT Variation after Power-Up Calibration

Table 1-10: OCT Variation after Power-Up Calibration for Arria V Devices

This table lists OCT variation with temperature and voltage after power-up calibration. The OCT variation is valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0°C to 85°C.

Symbol	Description	V _{CCIO} (V)	Value	Unit
		3.0	0.100	
		2.5	0.100	
		1.8	0.100	
dR/dV	OCT variation with voltage without recalibration	1.5	0.100	%/mV
		1.35	0.150	
		1.25	0.150	
		1.2	0.150	

Symbol	Description	V _{CCIO} (V)	Value	Unit
		3.0	0.189	
		2.5	0.208	
		1.8	0.266	
dR/dT	ocT variation with temperature without recalibration	1.5	0.273	%/°C
		1.35	0.200	
		1.25	0.200	
		1.2	0.317	

Pin Capacitance

Table 1-11: Pin Capacitance for Arria V Devices

Symbol	Description	Maximum	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	6	pF
C _{IOLR}	Input capacitance on left/right I/O pins	6	pF
C _{OUTFB}	Input capacitance on dual-purpose clock output/feedback pins	6	pF
C _{IOVREF}	Input capacitance on V _{REF} pins	48	pF

Hot Socketing

Table 1-12: Hot Socketing Specifications for Arria V Devices

Symbol	Description	Maximum	Unit
I _{IOPIN (DC)}	DC current per I/O pin	300	μΑ
I _{IOPIN (AC)}	AC current per I/O pin	8(10)	mA
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100	mA

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

I/O Standard		$V_{CCIO}(V)$)		V _{ID} (mV) ⁽¹⁶⁾			$V_{ICM(DC)}(V)$		١	V _{OD} (V) ⁽¹⁷	7)	١	V _{OCM} (V) ⁽	17)(18)
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML	Transn refere	nitter, ree nce cloc	ceiver, an k I/O pin	nd input 1 specific	reference clo ations, refer	ck pins o to Transo for .	of high-sj ceiver Sp Arria V (peed transcei pecifications f GT and ST D	overs use for Arria evices ta	the PCM V GX an ables.	IL I/O st nd SX De	andard. evices an	For trans d Transc	smitter, r ceiver Spe	receiver, and ecifications
2.5 V	2 375	2.5	2 625	100	V _{CM} =		0.05	D _{MAX} ≤ 1.25 Gbps	1.80	0.247		0.6	1 125	1 25	1 375
LVDS ⁽¹⁹⁾	2.375	2.5	2.023	100	1.25 V	_	1.05	D _{MAX} > 1.25 Gbps	1.55	0.247		0.0	1.125	1.25	1.375
RSDS (HIO) ⁽²⁰⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25		1.45	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) ⁽²¹⁾	2.375	2.5	2.625	200		600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4
				300			0.60	D _{MAX} ≤ 700 Mbps	1.80						
LVILCL				500			1.00	D _{MAX} > 700 Mbps	1.60						

Related Information

- Transceiver Specifications for Arria V GX and SX Devices on page 1-23 Provides the specifications for transmitter, receiver, and reference clock I/O pin.
- $^{(16)}$ The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}.
- ⁽¹⁷⁾ $R_{\rm L}$ range: $90 \le R_{\rm L} \le 110 \ \Omega$.
- ⁽¹⁸⁾ This applies to default pre-emphasis setting only.
- ⁽¹⁹⁾ For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 1.25 Gbps and 0 V to 1.85 V for data rates below 1.25 Gbps.
- ⁽²⁰⁾ For optimized RSDS receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.
- ⁽²¹⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.425 V.
- ⁽²²⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.

Symbol/Description	Condition	Transceiver Speed Grade 3			lloit
Symbol/Description	Condition	Min	Тур	Max	Ont
	85- Ω setting	—	85	—	Ω
Differential on-chip termination resistors	100- Ω setting	—	100	—	Ω
	120-Ω setting	—	120	—	Ω
	150-Ω setting		150	_	Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps			15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode			180	ps
Inter-transceiver block transmitter channel-to-channel skew ⁽⁵⁵⁾	× <i>N</i> PMA bonded mode			500	ps

Table 1-30: CMU PLL Specifications for Arria V GT and ST Devices

Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol Description	Min	Max	onit	
Supported data range	0.611	10.3125	Gbps	
fPLL supported data range	611	3125	Mbps	

⁽⁵⁵⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

Typical TX V_{OD} Setting for Arria V Transceiver Channels with termination of 100 Ω

Table 1-32: Typical TX Vor	Setting for Arria V Tran	sceiver Channels with	termination of 100 Ω

Symbol	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)	V _{OD} Setting ⁽⁵⁸⁾	V _{OD} Value (mV)
	6 ⁽⁵⁹⁾	120	34	680
	7 ⁽⁵⁹⁾	140	35	700
	8(59)	160	36	720
	9	180	37	740
	10	200	38	760
	11	220	39	780
	12	240	40	800
	13	260	41	820
	14	280	42	840
V _{OD} differential peak-to-peak typical	15	300	43	860
7 I	16	320	44	880
	17	340	45	900
	18	360	46	920
	19	380	47	940
	20	400	48	960
	21	420	49	980
	22	440	50	1000
	23	460	51	1020
	24	480	52	1040

⁽⁵⁸⁾ Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

⁽⁵⁹⁾ Only valid for data rates \leq 5 Gbps.

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)
	PCIe Gen1	2,500
PCIe	PCIe Gen2	5,000
	PCIe Cable	2,500
XAUI	XAUI 2135	3,125
	SRIO 1250 SR	1,250
	SRIO 1250 LR	1,250
	SRIO 2500 SR	2,500
	SRIO 2500 LR	2,500
	SRIO 3125 SR	3,125
Serial BanidIO [®] (SBIO)	SRIO 3125 LR	3,125
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000
	SRIO 5000 MR	5,000
	SRIO 5000 LR	5,000
	SRIO_6250_SR	6,250
	SRIO_6250_MR	6,250
	SRIO_6250_LR	6,250

Protocol	Sub-protocol	Data Rate (Mbps)
	CPRI E6LV	614.4
	CPRI E6HV	614.4
	CPRI E6LVII	614.4
	CPRI E12LV	1,228.8
	CPRI E12HV	1,228.8
	CPRI E12LVII	1,228.8
Common Public Radio Interface (CPRI)	CPRI E24LV	2,457.6
	CPRI E24LVII	2,457.6
	CPRI E30LV	3,072
	CPRI E30LVII	3,072
	CPRI E48LVII	4,915.2
	CPRI E60LVII	6,144
	CPRI E96LVIII ⁽⁶⁰⁾	9,830.4
Gbps Ethernet (GbE)	GbE 1250	1,250
	OBSAI 768	768
ODSAL	OBSAI 1536	1,536
ODSAI	OBSAI 3072	3,072
	OBSAI 6144	6,144
	SDI 270 SD	270
Serial digital interface (SDI)	SDI 1485 HD	1,485
	SDI 2970 3G	2,970

⁽⁶⁰⁾ You can achieve compliance with TX channel restriction of one HSSI channel per six-channel transceiver bank.

After the Boot ROM code exits and control is passed to the preloader, software can adjust the value of drvsel and smplsel via the system manager. drvsel can be set from 1 to 7 and smplsel can be set from 0 to 7. While the preloader is executing, the values for SDMMC_CLK and SDMMC_CLK_OUT increase to a maximum of 200 MHz and 50 MHz respectively.

The SD/MMC interface calibration support will be available in a future release of the preloader through the SoC EDS software update.

Symbol	Description	Min	Мах	Unit
	SDMMC_CLK clock period (Identification mode)	20	_	ns
T _{sdmmc_clk} (internal reference clock)	SDMMC_CLK clock period (Default speed mode)	5	—	ns
	SDMMC_CLK clock period (High speed mode)	5	_	ns
	SDMMC_CLK_OUT clock period (Identification mode)	2500	—	ns
T _{sdmmc_clk_out} (interface output clock)	SDMMC_CLK_OUT clock period (Default speed mode)	40	_	ns
	SDMMC_CLK_OUT clock period (High speed mode)	20	—	ns
T _{dutycycle}	SDMMC_CLK_OUT duty cycle	45	55	%
T _d	SDMMC_CMD/SDMMC_D output delay	$\frac{(T_{sdmmc_clk} \times drvsel)/2}{-1.23}$	$\begin{array}{l}(\mathrm{T}_{sdmmc_clk}\times\texttt{drvsel})/2\\+1.69^{\ (87)}\end{array}$	ns
T _{su}	Input setup time	$1.05 - (T_{sdmmc_clk} \times smplsel)/2^{(88)}$	_	ns
T _h	Input hold time	$\frac{(T_{sdmmc_clk} \times smplsel)}{2^{(88)}}$	_	ns

⁽⁸⁷⁾ drvsel is the drive clock phase shift select value.

⁽⁸⁸⁾ smplsel is the sample clock phase shift select value.

FPP Configuration Timing

DCLK-to-DATA[] Ratio (r) for FPP Configuration

Fast passive parallel (FPP) configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Depending on the DCLK-to-DATA[] ratio, the host must send a DCLK frequency that is r times the DATA[] rate in byte per second (Bps) or word per second (Wps). For example, in FPP $\times 16$ where the *r* is 2, the DCLK frequency must be 2 times the DATA[] rate in Wps.

Table 1-65: DCLK-to-DATA[] Ratio for Arria V Devices

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] Ratio (r)
	Off	Off	1
EDD (9 bit wide)	On	Off	1
FPP (8-bit wide)	Off	On	2
	On	On	2
FPP (16-bit wide)	Off	Off	1
	On	Off	2
	Off	On	4
	On	On	4

FPP Configuration Timing when DCLK-to-DATA[] = 1

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP ×8 and FPP ×16. For the respective DCLKto-DATA[] ratio, refer to the DCLK-to-DATA[] Ratio for Arria V Devices table.

Table 1-66: FPP Timing Parameters When DCLK-to-DATA[] Ratio is 1 for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Initialization

Table 1-71: Initialization Clock Source Option and the Maximum Frequency for Arria V Devices

Initialization Clock Source	Configuration Scheme	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	
CLKUSR ⁽¹⁰⁷⁾	PS and FPP	125	Т
	AS	100	init
DCLK	PS and FPP	125	

Configuration Files

Table 1-72: Uncompressed .rbf Sizes for Arria V Devices

Use this table to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus Prime software. However, for a specific version of the Quartus Prime software, any design targeted for the same device has the same uncompressed configuration file size.

The IOCSR raw binary file (.rbf) size is specifically for the Configuration via Protocol (CvP) feature.

Arria V GX, GT, SX, and ST Device Datasheet

⁽¹⁰⁷⁾ To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus Prime software from the **General** panel of the **Device and Pin Options** dialog box.

Date	Version	Changes
January 2015	2015.01.30	Updated the description for V _{CC_AUX_SHARED} to "HPS auxiliary power supply" in the following tables:
		 Absolute Maximum Ratings for Arria V Devices HPS Power Supply Operating Conditions for Arria V SX and ST Devices
		• Added statement in I/O Standard Specifications: You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.
		• Updated the conditions for transceiver reference clock rise time and fall time: Measure at ±60 mV of differential signal. Added a note to the conditions: REFCLK performance requires to meet transmitter REFCLK phase noise specification.
		• Updated the description in Periphery Performance Specifications to mention that proper timing closure is required in design.
		• Updated HPS Clock Performance main_base_clk specifications from 525 MHz (for -I3 speed grade) and 462 MHz (for -C4 speed grade) to 400 MHz.
		• Updated HPS PLL VCO maximum frequency to 1,600 MHz (for -C5, -I5, and -C6 speed grades), 1,850 MHz (for -C4 speed grade), and 2,100 MHz (for -I3 speed grade).
		Changed the symbol for HPS PLL input jitter divide value from NR to N.
		• Removed "Slave select pulse width (Texas Instruments SSP mode)" parameter from the following tables:
		 SPI Master Timing Requirements for Arria V Devices SPI Slave Timing Requirements for Arria V Devices
		 Added descriptions to USB Timing Characteristics section in HPS Specifications: PHYs that support LPM mode may not function properly with the USB controller due to a timing issue. It is recommended that designers use the MicroChip USB3300 PHY device that has been proven to be successful on the development board.
		Added HPS JTAG timing specifications.
		• Updated FPGA JTAG timing specifications note as follows: A 1-ns adder is required for each V_{CCIO} voltage step down from 3.0 V. For example, $t_{JPCO} = 13$ ns if V_{CCIO} of the TDO I/O bank = 2.5 V, or 14 ns if it equals 1.8 V.
		• Updated the value in the V _{ICM} (AC Coupled) row and in note 6 from 650 mV to 750 mV in the Transceiver Specifications for Arria V GT and ST Devices table.

Date	Version	Changes
August 2013	3.5	Removed "Pending silicon characterization" note in Table 29.Updated Table 25.
August 2013	3.4	 Removed Preliminary tags for Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 9, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, Table 29, Table 30, Table 31, Table 35, Table 36, Table 51, Table 53, Table 54, Table 55, Table 56, Table 57, Table 60, Table 62, and Table 64. Updated Table 1, Table 3, Table 11, Table 19, Table 20, Table 21, Table 22, Table 29.
June 2013	3.3	Updated Table 20, Table 21, Table 25, and Table 38.
May 2013	3.2	 Added Table 37. Updated Figure 8, Figure 9, Figure 20, Figure 22, and Figure 23. Updated Table 1, Table 5, Table 10, Table 13, Table 19, Table 20, Table 21, Table 23, Table 29, Table 39, Table 40, Table 46, Table 56, Table 57, Table 60, and Table 64. Updated industrial junction temperature range for -I3 speed grade in "PLL Specifications" section.
March 2013	3.1	 Added HPS reset information in the "HPS Specifications" section. Added Table 60. Updated Table 1, Table 3, Table 17, Table 20, Table 29, and Table 59. Updated Figure 21.

I/O Standard	V _{CCIO} (V) ⁽¹²⁸⁾			V _{ID} (mV) ⁽¹²⁹⁾			V _{ICM(DC)} (V)			V _{OD} (V) ⁽¹³⁰⁾			V _{OCM} (V) ⁽¹³⁰⁾		
	Min	Тур	Мах	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Мах
RSDS (HIO) (133)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3	_	1.4	0.1	0.2	0.6	0.5	1.2	1.4
Mini- LVDS (HIO) (134)	2.375	2.5	2.625	200	_	600	0.4	_	1.325	0.25		0.6	1	1.2	1.4
LVPECL (135), (136)		_	_	300		_	0.6	D _{MAX} ≤ 700 Mbps	1.8	_	_		_	_	_
		_	_	300			1	D _{MAX} > 700 Mbps	1.6		_				

Related Information

Glossary on page 2-73

⁽¹²⁸⁾ Differential inputs are powered by VCCPD which requires 2.5 V.

⁽¹²⁹⁾ The minimum VID value is applicable over the entire common mode range, VCM.

RL range: $90 \le RL \le 110 \Omega$. (130)

⁽¹³³⁾ For optimized RSDS receiver performance, the receiver voltage input range must be between 0.25 V to 1.45 V.

⁽¹³⁴⁾ For optimized Mini-LVDS receiver performance, the receiver voltage input range must be between 0.3 V to 1.425 V.

⁽¹³⁵⁾ LVPECL is only supported on dedicated clock input pins.

⁽¹³⁶⁾ For optimized LVPECL receiver performance, the receiver voltage input range must be between 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

Sumbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transo	Unit		
Symbol/Description	Conditions	Min	Тур	Max	Min	Тур	Max	
fixedclk clock frequency	PCIe Receiver Detect	_	100 or 125		_	100 or 125	_	MHz
Reconfiguration clock (mgmt_clk_ clk) frequency	—	100		125	100	_	125	MHz

Related Information

Arria V Device Overview

For more information about device ordering codes.

Receiver

Table 2-24: Receiver Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the *Arria V Device Overview*.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
Symbol Description	Conditions	Min	Тур	Max	Min	Тур	Max	
Supported I/O Standards	d I/O Standards 1.4-V PCML, 1.5-V PCML, 2.5-V		LVPECL, a	and LVDS				
Data rate (Standard PCS) (143), (144)	—	600		9900	600	_	8800	Mbps
Data rate (10G PCS) (143), (144)	_	600		12500	600	_	10312.5	Mbps
Absolute $\mathrm{V}_{\mathrm{MAX}}$ for a receiver pin $^{(145)}$	—			1.2		—	1.2	V
Absolute V_{MIN} for a receiver pin	_	-0.4	_		-0.4		_	V

⁽¹⁴³⁾ The line data rate may be limited by PCS-FPGA interface speed grade.

⁽¹⁴⁴⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

⁽¹⁴⁵⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Term				Definition				
R _L	Receiver differential input discrete resistor (external to the Arria V GZ device).							
SW (sampling window)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown:							
	Bit Time							
		0.5 x TCCS	RSKM	Sampling Window (SW)	RSKM	0.5 x TCCS		
Single-ended voltage referenced I/O standard	 The JEDEC standard for SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard 							
	-	V _{0H}		V REF	Viн(DC Vil(DC)	V <u>ccio</u> VIH(AC) VIL(AC) VIL(AC)		

Term	Definition
V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
V _{SWING}	Differential input voltage
V _X	Input differential cross point voltage
V _{OX}	Output differential cross point voltage
W	High-speed I/O block—clock boost factor

Document Revision History

Date	Version	Changes
February 2017	2017.02.10	 Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK-to-DATA[] Ratio is 1" table. Changed the minimum value for t_{CD2UMC} in the "FPP Timing Parameters for Arria V GZ Devices When the DCLK to DATA[] Ratio is 1" table.
		 Changed the minimum value for t_{CD2UMC} in the "AS Timing Parameters for AS x1 and AS x4 Configurations in Arria V GZ Devices" table. Changed the minimum value for t_{CD2UMC} in the "PS Timing Parameters for Arria V GZ Devices" table. Changed the minimum number of clock cycles value in the "Initialization Clock Source Option and the Maximum Frequency for Arria V GZ Devices" table.

