Intel - 5ASXMB3E4F31I3N Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Details	
Product Status	Obsolete
Architecture	MCU, FPGA
Core Processor	Dual ARM [®] Cortex [®] -A9 MPCore [™] with CoreSight [™]
Flash Size	-
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	800MHz
Primary Attributes	FPGA - 350K Logic Elements
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	896-BBGA, FCBGA
Supplier Device Package	896-FBGA, FC (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/intel/5asxmb3e4f31i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum ⁽¹⁾	Typical	Maximum ⁽¹⁾	Unit
		3.3 V	3.135	3.3	3.465	V
		3.0 V	2.85	3.0	3.15	V
		2.5 V	2.375	2.5	2.625	V
V	I/O buffers power supply	1.8 V	1.71	1.8	1.89	V
V _{CCIO}	1/O builets power supply	1.5 V	1.425	1.5	1.575	V
		1.35 V	1.283	1.35	1.418	V
		1.25 V	1.19	1.25	1.31	V
		1.2 V	1.14	1.2	1.26	V
V _{CCD_FPLL}	PLL digital voltage regulator power supply	_	1.425	1.5	1.575	V
V _{CCA_FPLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
VI	DC input voltage	—	-0.5		3.6	V
V _O	Output voltage	—	0		V _{CCIO}	V
	Operating junction temperature	Commercial	0		85	°C
TJ		Industrial	-40		100	°C
t (4)	Power supply ramp time	Standard POR	200 µs		100 ms	_
t _{RAMP} ⁽⁴⁾		Fast POR	200 µs		4 ms	

⁽¹⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽⁴⁾ This is also applicable to HPS power supply. For HPS power supply, refer to t_{RAMP} specifications for standard POR when HPS_PORSEL = 0 and t_{RAMP} specifications for fast POR when HPS_PORSEL = 1.

Table 1-21: Transceiver Clocks Specifications for Arria V GX and SX Devices

Symbol/Description	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Мах	Min	Тур	Max	Onit
fixedclk clock frequency	PCIe Receiver Detect	—	125	—	—	125	_	MHz
Transceiver Reconfigura- tion Controller IP (mgmt_ clk_clk) clock frequency	—	75	_	125	75	_	125	MHz

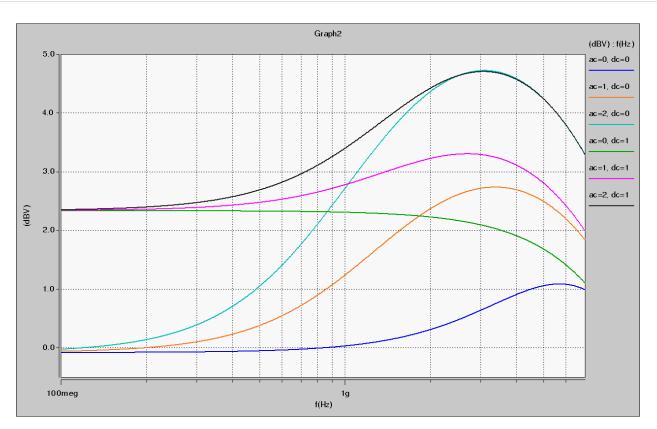
Table 1-22: Receiver Specifications for Arria V GX and SX Devices

Symbol/Deceription	Condition	Transceiver Speed Grade 4			Transceiver Speed Grade 6			Unit
Symbol/Description	Condition	Min	Тур	Max	Min	Тур	Max	Onit
Supported I/O standards]	1.5 V PCML,	2.5 V PCML,	LVPECL, an	d LVDS		
Data rate ⁽²⁸⁾	_	611	_	6553.6	611	_	3125	Mbps
Absolute V_{MAX} for a receiver pin ⁽²⁹⁾	_			1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_			1.6			1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_			2.2			2.2	V

 ⁽²⁸⁾ To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.
 ⁽²⁹⁾ The device cannot tolerate prolonged operation at this absolute maximum.

Symbol/Description	Condition	Tran	sceiver Speed Gra	Unit	
Symbol/Description	Condition	Min	Тур	Max	Ont
	85-Ω setting	—	85	—	Ω
Differential on-chip termination	100- Ω setting		100		Ω
resistors	120-Ω setting	—	120		Ω
	150-Ω setting		150		Ω
Intra-differential pair skew	TX V_{CM} = 0.65 V (AC coupled) and slew rate of 15 ps			15	ps
Intra-transceiver block transmitter channel-to-channel skew	×6 PMA bonded mode			180	ps
Inter-transceiver block transmitter channel-to-channel skew ⁽⁵⁵⁾	× <i>N</i> PMA bonded mode			500	ps

Table 1-30: CMU PLL Specifications for Arria V GT and ST Devices


Symbol/Description	Transceiver S	peed Grade 3	Unit	
Symbol/Description	Min	Max		
Supported data range	0.611	10.3125	Gbps	
fPLL supported data range	611	3125	Mbps	

⁽⁵⁵⁾ This specification is only applicable to channels on one side of the device across two transceiver banks.

CTLE Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain

Figure 1-2: Continuous Time-Linear Equalizer (CTLE) Response at Data Rates > 3.25 Gbps across Supported AC Gain and DC Gain for Arria V GX, GT, SX, and ST Devices

Arria V GX, GT, SX, and ST Device Datasheet

Altera Corporation

Table 1-34: Transceiver Compliance Specification for All Supported Protocol for Arria V GX, GT, SX, and ST Devices

Protocol	Sub-protocol	Data Rate (Mbps)		
	PCIe Gen1	2,500		
PCIe	PCIe Gen2	5,000		
	PCIe Cable	2,500		
XAUI	XAUI 2135	3,125		
	SRIO 1250 SR	1,250		
	SRIO 1250 LR	1,250		
	SRIO 2500 SR	2,500		
	SRIO 2500 LR	2,500		
	SRIO 3125 SR	3,125		
Serial RapidIO [®] (SRIO)	SRIO 3125 LR	3,125		
Serial Rapidio (SRIO)	SRIO 5000 SR	5,000		
	SRIO 5000 MR	5,000		
	SRIO 5000 LR	5,000		
	SRIO_6250_SR	6,250		
	SRIO_6250_MR	6,250		
	SRIO_6250_LR	6,250		

Protocol	Sub-protocol	Data Rate (Mbps)
	SONET 155	155.52
SONET	SONET 622	622.08
	SONET 2488	2,488.32
	GPON 155	155.52
Gigabit-capable passive optical network (GPON)	GPON 622	622.08
Orgabil-Capable passive optical network (Or ON)	GPON 1244	1,244.16
	GPON 2488	2,488.32
QSGMII	QSGMII 5000	5,000

Core Performance Specifications

Clock Tree Specifications

Table 1-35: Clock Tree Specifications for Arria V Devices

Parameter		Performance	Unit	
Parameter	–I3, –C4	–I5, –C5	-C6	Onic
Global clock and Regional clock	625	625	525	MHz
Peripheral clock	450	400	350	MHz

PLL Specifications

Table 1-36: PLL Specifications for Arria V Devices

This table lists the Arria V PLL block specifications. Arria V PLL block does not include HPS PLL.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		-3 speed grade	_	_	670 ⁽⁶³⁾	MHz
f	Output frequency for external clock	-4 speed grade	_	_	670 ⁽⁶³⁾	MHz
f _{out_ext}	output	–5 speed grade	_	_	622 ⁽⁶³⁾	MHz
		-6 speed grade			500 ⁽⁶³⁾	MHz
t _{OUTDUTY}	Duty cycle for external clock output (when set to 50%)		45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	_	10	ns
t _{DYCONFIGCLK}	Dynamic configuration clock for mgmt_ clk and scanclk	_	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of- device configuration or deassertion of areset	_	_		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_			1	ms
		Low	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop bandwidth	Medium	_	1.5	_	MHz
		High ⁽⁶⁴⁾	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	_	_	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	_	10	_	_	ns
+ (65)(66)	Input dock and to and ittar	$F_{REF} \ge 100 \text{ MHz}$	_	_	0.15	UI (p-p)
t _{INCCJ} ⁽⁶⁵⁾⁽⁶⁶⁾	Input clock cycle-to-cycle jitter	$F_{REF} < 100 \text{ MHz}$	_	_	±750	ps (p-p)

⁽⁶⁴⁾ High bandwidth PLL settings are not supported in external feedback mode.

⁽⁶⁵⁾ A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

⁽⁶⁶⁾ F_{REF} is f_{IN}/N , specification applies when N = 1.

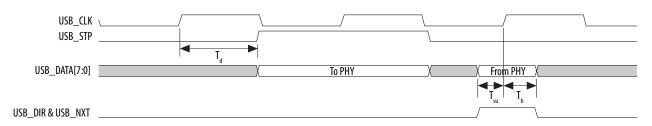
Table 1-38: Memory Block Performance Specifications for Arria V Devices

Memory	Mode	Resourc	es Used	Performance			Unit
Memory	Mode	ALUTs	Memory	-I3, -C4	–I5, –C5	-C6	Onit
	Single port, all supported widths	0	1	500	450	400	MHz
	Simple dual-port, all supported widths	0	1	500	450	400	MHz
MLAB	Simple dual-port with read and write at the same address	0	1	400	350	300	MHz
	ROM, all supported width	—		500	450	400	MHz
	Single-port, all supported widths	0	1	400	350	285	MHz
	Simple dual-port, all supported widths	0	1	400	350	285	MHz
M10K Block	Simple dual-port with the read-during- write option set to Old Data , all supported widths	0	1	315	275	240	MHz
	True dual port, all supported widths	0	1	400	350	285	MHz
	ROM, all supported widths	0	1	400	350	285	MHz

Internal Temperature Sensing Diode Specifications

Table 1-39: Internal Temperature Sensing Diode Specifications for Arria V Devices

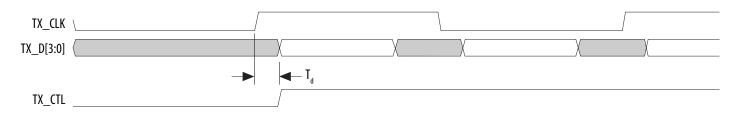
Temperature Range	Accuracy	Offset Calibrated Option	Sampling Rate	Conversion Time	Resolution	Minimum Resolution with no Missing Codes
-40 to 100°C	±8°C	No	1 MHz	< 100 ms	8 bits	8 bits


Periphery Performance

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

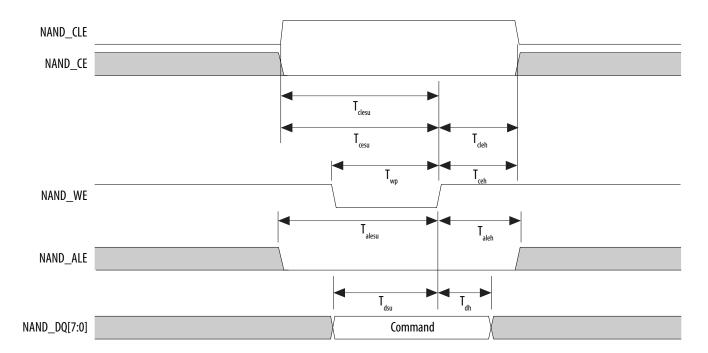
Figure 1-12: USB Timing Diagram



Ethernet Media Access Controller (EMAC) Timing Characteristics

Table 1-56: Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Arria V Devices

Symbol	Description	Min	Тур	Max	Unit
T _{clk} (1000Base-T)	TX_CLK clock period	_	8	_	ns
T _{clk} (100Base-T)	TX_CLK clock period	—	40		ns
T _{clk} (10Base-T)	TX_CLK clock period	_	400		ns
T _{dutycycle}	TX_CLK duty cycle	45		55	%
T _d	TX_CLK to TXD/TX_CTL output data delay	-0.85		0.15	ns


Figure 1-13: RGMII TX Timing Diagram

Symbol	Description	Min	Мах	Unit
T _{dh} ⁽⁸⁹⁾	Data to write enable hold time	5	—	ns
T _{cea}	Chip enable to data access time		25	ns
T _{rea}	Read enable to data access time		16	ns
T _{rhz}	Read enable to data high impedance		100	ns
T _{rr}	Ready to read enable low	20		ns

Figure 1-17: NAND Command Latch Timing Diagram

Related Information

- PS Configuration Timing on page 1-81
- AS Configuration Timing

Provides the AS configuration timing waveform.

DCLK Frequency Specification in the AS Configuration Scheme

Table 1-69: DCLK Frequency Specification in the AS Configuration Scheme

This table lists the internal clock frequency specification for the AS configuration scheme. The DCLK frequency specification applies when you use the internal oscillator as the configuration clock source. The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

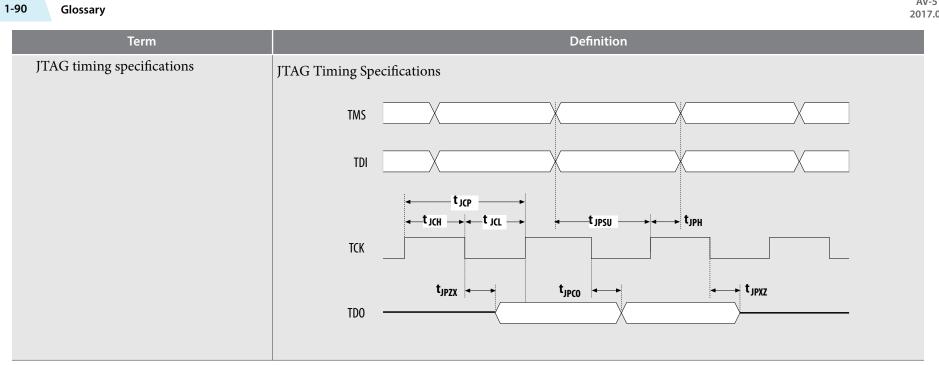
Parameter	Minimum	Typical	Maximum	Unit
	5.3	7.9	12.5	MHz
DCLK frequency in AS configuration scheme	10.6	15.7	25.0	MHz
Bellk frequency in AS configuration scheme	21.3	31.4	50.0	MHz
	42.6	62.9	100.0	MHz

PS Configuration Timing

Table 1-70: PS Timing Parameters for Arria V Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	_	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low		600	ns
t _{CFG}	nCONFIG low pulse width	2	_	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽¹⁰³⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506(104)	μs

 $^{^{(103)}\,}$ You can obtain this value if you do not delay configuration by extending the <code>nCONFIG</code> or <code>nSTATUS</code> low pulse width.


⁽¹⁰⁴⁾ You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

			Active Seria	 (108)	Fast Passive Parallel ⁽¹⁰⁹⁾				
Variant	Member Code	Width	DCLK (MHz)	Minimum Configura- tion Time (ms)	Width	DCLK (MHz)	Minimum Configuration Time (ms)		
	A1	4	100	178	16	125	36		
	A3	4	100	178	16	125	36		
	A5	4	100	255	16	125	51		
Arria V GX	A7	4	100	255	16	125	51		
Allia v GA	B1	4	100	344	16	125	69		
	B3	4	100	344	16	125	69		
	B5	4	100	465	16	125	93		
	B7	4	100	465	16	125	93		
	C3	4	100	178	16	125	36		
Arria V GT	C7	4	100	255	16	125	51		
Allia v Gi	D3	4	100	344	16	125	69		
	D7	4	100	465	16	125	93		
Arria V SX	В3	4	100	465	16	125	93		
Allia V SA	B5	4	100	465	16	125	93		
Arria V ST	D3	4	100	465	16	125	93		
	D5	4	100	465	16	125	93		

Related Information Configuration Files on page 1-83

(108) DCLK frequency of 100 MHz using external CLKUSR.
 (109) Maximum FPGA FPP bandwidth may exceed bandwidth available from some external storage or control logic.

1-100 Document Revision History

Date	Version	Changes
November 2012	3.0	 Updated Table 2, Table 4, Table 9, Table 14, Table 16, Table 17, Table 20, Table 21, Table 25, Table 29, Table 36, Table 56, Table 57, and Table 60. Removed table: Transceiver Block Jitter Specifications for Arria V Devices. Added HPS information: Added "HPS Specifications" section. Added Table 38, Table 39, Table 40, Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49, and Table 50. Added Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19. Updated Table 3 and Table 5.
October 2012	2.4	 Updated Arria V GX V_{CCR_GXBL/R}, V_{CCT_GXBL/R}, and V_{CCL_GXBL/R} minimum and maximum values, and data rate in Table 4. Added receiver V_{ICM} (AC coupled) and V_{ICM} (DC coupled) values, and transmitter V_{OCM} (AC coupled) and V_{OCM} (DC coupled) values in Table 20 and Table 21.
August 2012	2.3	Updated the SERDES factor condition in Table 30.
July 2012	2.2	 Updated the maximum voltage for V_I (DC input voltage) in Table 1. Updated Table 20 to include the Arria V GX -I3 speed grade. Updated the minimum value of the fixedclk clock frequency in Table 20 and Table 21. Updated the SERDES factor condition in Table 30. Updated Table 50 to include the IOE programmable delay settings for the Arria V GX -I3 speed grade.
June 2012	2.1	Updated $V_{CCR_GXBL/R}$, $V_{CCT_GXBL/R}$, and $V_{CCL_GXBL/R}$ values in Table 4.

Symbol	Description	Condition	Minimum ⁽¹¹⁴⁾	Typical	Maximum ⁽¹¹⁴⁾	Unit
VI	DC input voltage		-0.5	_	3.6	V
V _O	Output voltage		0	_	V _{CCIO}	V
TI	Operating junction temperature	Commercial	0		85	°C
ıj	Operating junction temperature	Industrial	-40	_	100	°C
t	Derver sumply men time	Standard POR	200 µs	_	100 ms	_
t _{RAMP}	Power supply ramp time	Fast POR	200 µs	_	4 ms	—

Recommended Transceiver Power Supply Operating Conditions

Table 2-6: Recommended Transceiver Power Supply Operating Conditions for Arria V GZ Devices

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit	
V _{CCA_GXBL}	Transceiver channel PLL power supply (left side)	2.85	3.0	3.15	V	
(119), (120)	Transcerver channel PLL power supply (left side)	2.375	2.5	2.625	v	
V _{CCA} _	Transceiver channel PLL power supply (right side)	2.85	3.0	3.15	V	
V _{CCA} GXBR ⁽¹¹⁹⁾ , ⁽¹²⁰⁾	Transcerver channel PLL power supply (fight side)	2.375	2.5	2.625	v	
V _{CCHIP_L}	Transceiver hard IP power supply (left side)	0.82	0.85	0.88	V	
V _{CCHSSI_L}	Transceiver PCS power supply (left side)	0.82	0.85	0.88	V	
V _{CCHSSI_R}	Transceiver PCS power supply (right side)	0.82	0.85	0.88	V	

⁽¹¹⁴⁾ The power supply value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²⁰⁾ When using ATX PLLs, the supply must be 3.0 V.

⁽¹¹⁹⁾ This supply must be connected to 3.0 V if the CMU PLL, receiver CDR, or both, are configured at a base data rate > 6.5 Gbps. Up to 6.5 Gbps, you can connect this supply to either 3.0 V or 2.5 V.

Symbol	Description	Minimum ⁽¹¹⁸⁾	Typical	Maximum ⁽¹¹⁸⁾	Unit
		0.82	0.85	0.88	
V _{CCR_GXBL} ⁽¹²¹⁾	Receiver analog power supply (left side)	0.97	1.0	1.03	V
		1.03	1.05	1.07	
		0.82	0.85	0.88	
V _{CCR_GXBR} ⁽¹²¹⁾	Receiver analog power supply (right side)	0.97	1.0	1.03	V
		le) 0.97 1.0 1.03 V 1.03 1.05 1.07 1.03 0.82 0.85 0.88 0.97 1.0 1.03 V 1.03 1.05 1.07			
		0.82	0.85	0.88	
V _{CCT_GXBL} ⁽¹²¹⁾	Transmitter analog power supply (left side)	0.97	1.0	1.03	V
		$\frac{1.03}{1.03} \frac{1.05}{0.82}$ nalog power supply (right side) er analog power supply (left side) er analog power supply (left side) er analog power supply (right side) er analog power supply (right side) er output buffer power supply (left side) $\frac{0.82}{0.97} \frac{0.82}{0.85}$ $\frac{0.82}{0.97} \frac{0.85}{1.0}$ $\frac{0.82}{0.97} \frac{0.85}{1.0}$	1.07		
		0.82	0.85	0.88	
V _{CCT_GXBR} ⁽¹²¹⁾	Transmitter analog power supply (right side)	0.97	1.0	1.03	V
		1.03	0.85 0.88 1.0 1.03 V 1.05 1.07 V 0.85 0.88 V 1.0 1.03 V 1.05 1.07 V 0.85 0.88 V 1.05 1.03 V 1.05 1.07 V 1.05 1.07 V 1.05 1.07 V 1.05 1.07 V 1.05 0.88 V 1.05 1.03 V 1.05 1.03 V		
V _{CCH_GXBL}	Transmitter output buffer power supply (left side)	1.425	1.5	1.575	V
V _{CCH_GXBR}	Transmitter output buffer power supply (right side)	1.425	1.5	1.575	V

⁽¹¹⁸⁾ This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

⁽¹²¹⁾ This supply must be connected to 1.0 V if the transceiver is configured at a data rate > 6.5 Gbps, and to 1.05 V if configured at a data rate > 10.3 Gbps when DFE is used. For data rate up to 6.5 Gbps, you can connect this supply to 0.85 V.

Table 2-19: Differential SSTL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)			V _{SWIN}	V _{SWING(DC)} (V)		$V_{X(AC)}(V)$		V _{SWING(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Мах	
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.2	_	V _{CCIO} /2 + 0.2	0.62	$V_{CCIO} + 0.6$	
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCIO} + 0.6	V _{CCIO} /2 - 0.175		V _{CCIO} /2 + 0.175	0.5	V _{CCIO} + 0.6	
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	(127)	V _{CCIO} /2 - 0.15		V _{CCIO} /2 + 0.15	0.35	_	
SSTL-135 Class I, II	1.283	1.35	1.45	0.2	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	$2(V_{IL(AC)} - V_{REF})$	
SSTL-125 Class I, II	1.19	1.25	1.31	0.18	(127)	V _{CCIO} /2 - 0.15	V _{CCIO} /2	V _{CCIO} /2 + 0.15	2(V _{IH(AC)} - V _{REF})	_	
SSTL-12 Class I, II	1.14	1.2	1.26	0.18	—	V _{REF} -0.15	V _{CCIO} /2	V _{REF} + 0.15	-0.30	0.30	

Table 2-20: Differential HSTL and HSUL I/O Standards for Arria V GZ Devices

I/O Standard	V _{CCIO} (V)		V _{DIF(DC)} (V)		$V_{X(AC)}(V)$			V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78		1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68	_	0.9	0.4	—

 $^{^{(127)}}$ The maximum value for $V_{SWING(DC)}$ is not defined. However, each single-ended signal needs to be within the respective single-ended limits ($V_{IH(DC)}$ and $V_{IL(DC)}$).

Table 2-26: CMU PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Symbol/Description	Conditions	Trans	ceiver Spee	d Grade 2	Transc	Unit		
	Conditions	Min	Тур	Max	Min	Тур	Мах	
Supported data range	_	600	_	12500	600	_	10312.5	Mbps
t _{pll_powerdown} ⁽¹⁵³⁾	_	1	_		1	_		μs
t _{pll_lock} ⁽¹⁵⁴⁾	_		—	10	_		10	μs

Related Information

Arria V Device Overview

For more information about device ordering codes.

ATX PLL

Table 2-27: ATX PLL Specifications for Arria V GZ Devices

Speed grades shown refer to the PMA Speed Grade in the device ordering code. The maximum data rate could be restricted by the Core/PCS speed grade. Contact your Altera Sales Representative for the maximum data rate specifications in each speed grade combination offered. For more information about device ordering codes, refer to the Arria V Device Overview.

Arria V GZ Device Datasheet

Altera Corporation

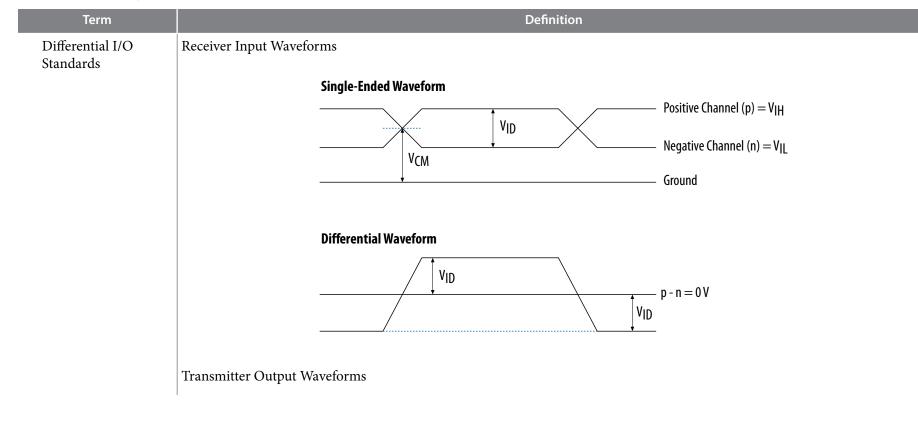
 $t_{pll_powerdown}$ is the PLL powerdown minimum pulse width. (153)

⁽¹⁵⁴⁾ $t_{\text{pll} \text{ lock}}$ is the time required for the transmitter CMU/ATX PLL to lock to the input reference clock frequency after coming out of reset.

Table 2-60: PS Timing Parameters for Arria V GZ Devices

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG low to nSTATUS low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2		μs
t _{STATUS}	nSTATUS low pulse width	268	1,506 (217)	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1,506 (218)	μs
t _{CF2CK} (219)	nCONFIG high to first rising edge on DCLK	1,506	_	μs
t _{ST2CK} ⁽²¹⁹⁾	nSTATUS high to first rising edge of DCLK	2		μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5		ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	$0.45 imes 1/f_{MAX}$		S
t _{CL}	DCLK low time	$0.45 imes 1/f_{MAX}$	—	S
t _{CLK}	DCLK period	1/f _{MAX}		S
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽²²⁰⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	$4 \times \text{maximum DCLK}$ period	_	
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t_{CD2CU} + (8576 × CLKUSR period) ⁽²²¹⁾	_	_

⁽²¹⁷⁾ This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.


⁽²¹⁸⁾ This value is applicable if you do not delay configuration by externally holding the nSTATUS low.

⁽²¹⁹⁾ If nSTATUS is monitored, follow the t_{ST2CK} specification. If nSTATUS is not monitored, follow the t_{CF2CK} specification.

⁽²²⁰⁾ The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

Glossary

Table 2-68: Glossary

