

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=dsp56303ag100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.2 External Data Bus

Table 1-7. External Data Bus Signals	
--	--

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description
D[0-23]	Input/ Output	Ignored Input	Last state: Input: Ignored Output: Tri-stated	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] are tri-stated.

1.5.3 External Bus Control

Table 1-8.	External Bus Con	trol Signals
	External Bao bon	a or orginalo

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RAS[0-3]	Output		Row Address Strobe —When defined as \overline{RAS} , these signals can be used as \overline{RAS} for DRAM interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tristated.
WR	Output	Tri-stated	Write Enable—When the DSP is the bus master, \overline{WR} is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.
ΤΑ	Input	Ignored Input	Transfer Acknowledge —If the DSP56303 is the bus master and there is no external bus activity, or the DSP56303 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states $(1, 2infinity)$ can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is provide the transfer and by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles. To use the TA functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by TA deassertion; otherwise, improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register. TA functionality cannot be used during DRAM type accesses; otherwise improper operation may result.
BR	Output	Reset: Output (deasserted) State during Stop/Wait depends on BRH bit setting: • BRH = 0: Output, deasserted • BRH = 1: Maintains last state (that is, if asserted, remains asserted)	Bus Request —Asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independently of whether the DSP56303 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56303 is the bus master. (See the description of bus "parking" in the \overline{BB} signal description.) The bus request hold (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.

1.8 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.

Table 1-12.	Enhanced S	vnchronous	Serial	Interface 0
		ynonionouo	oonar	michaec e

		Oh ann a barria tha a	F	100	100 MHz		
NO.		Characteristics	Expression	Min	Мах	Unit	
Notes:	1.	When fast interrupts are used and IRQA, IRQB, IRQC, and IRQI prevent multiple interrupt service. To avoid these timing restriction when fast interrupts are used. Long interrupts are recommended This timing depends on several extinges	D are defined as level-sensitive, tions, the deasserted Edge-trigger d for Level-sensitive mode.	mings 19 t ed mode is	hrough 21 s recomme	apply to nded	
	ζ.	 Inis timing depends on several settings: For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCT Bit 17 = 0), a stabilization delay is required to assure that the oscillator is stable before programs are executed. Resetting the Stop delay (Operating Mode Register Bit 6 = 0) provides the proper delay. While Operating Mode Register Bit 6 = 1 can be set it is not recommended, and these specifications do not guarantee timings for that case. For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization delay is required and recovery is minimal (Operating Mode Register Bit 6 setting is ignored). For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time is defined by the PCTL Bit 17 and Operating Mode Register Bit 6 settings. For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery ends when the last of these two events occurs. The stop delay counter completion. PLC value for PLL disable is 0. 					
	3. 4.	 well. Periodically sampled and not 100 percent tested. Value depends on clock source: For an external clock generator, RESET duration is measured active and valid. For an internal oscillator, RESET duration is measured while R reflects the crystal oscillator stabilization time after power-up. Th and other components connected to the oscillator and reflects w When the V_{CC} is valid, but the other "required RESET duration device circuitry is in an uninitialized state that can result in signif minimize this state to the shortest possible duration. 	while $\overline{\text{RESET}}$ is asserted, V_{CC} is $\overline{\text{RESET}}$ is asserted and V_{CC} is values number is affected both by the porst case conditions. "conditions (as specified above) icant power consumption and he	valid, and t id. The spe e specificat have not t at-up. Desi	the EXTAL ecified timir ions of the peen yet m igns should	input is ng crystal et, the d	
	5. 6. 7. 8.	If PLL does not lose lock. $V_{CC} = 3.3 V \pm 0.3 V$; $T_J = -40^{\circ}C$ to $+100^{\circ}C$, $C_L = 50 \text{ pF}$. WS = number of wait states (measured in clock cycles, number Use the expression to compute a maximum value.	of T _C).				

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing⁶ (Continued)

Figure 2-3. Reset Timing

Figure 2-7. Synchronous Interrupt from Wait State Timing

Figure 2-8. Operating Mode Select Timing

Figure 2-11. External Memory Access (DMA Source) Timing

Figure 2-17. DRAM Out-of-Page Wait State Selection Guide

Ne	Characteristics	Symbol	Everacion ³	100 MHz		Unit
NO.	Characteristics	Symbol	Expression	Min	Max	onit
157	Random read or write cycle time	t _{RC}	$12 \times T_{C}$	120.0	—	ns
158	RAS assertion to data valid (read)	t _{RAC}	6.25 imes T _C –7.0	_	55.5	ns
159	CAS assertion to data valid (read)	t _{CAC}	$3.75 imes T_{C}$ –7.0	_	30.5	ns
160	Column address valid to data valid (read)	t _{AA}	$4.5 imes T_C - 7.0$	_	38.0	ns
161	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
162	RAS deassertion to RAS assertion	t _{RP}	$4.25 imes T_{C} - 4.0$	38.5	—	ns
163	RAS assertion pulse width	t _{RAS}	$7.75 imes T_{C}$ –4.0	73.5	—	ns
164	CAS assertion to RAS deassertion	t _{RSH}	$5.25 imes T_{C}$ –4.0	48.5	—	ns
165	RAS assertion to CAS deassertion	t _{CSH}	$6.25 imes T_{C} - 4.0$	58.5	—	ns
166	CAS assertion pulse width	t _{CAS}	$3.75 imes T_C - 4.0$	33.5	—	ns
167	RAS assertion to CAS assertion	t _{RCD}	$2.5\times~T_{C}\pm4.0$	21.0	29.0	ns
168	RAS assertion to column address valid	t _{RAD}	$1.75 imes T_{C} \pm 4.0$	13.5	21.5	ns
169	CAS deassertion to RAS assertion	t _{CRP}	$5.75 imes T_{C}$ –4.0	53.5	—	ns
170	CAS deassertion pulse width	t _{CP}	$4.25 imes T_C - 6.0$	36.5	—	ns
171	Row address valid to RAS assertion	t _{ASR}	$4.25 imes T_C - 4.0$	38.5	—	ns

Table 2-11.	DRAM Out-of-Page and Re	fresh Timings, Eleven Wait States ^{1,2}

2.5.5.5 Asynchronous Bus Arbitration Timings

Table 2-15.	Asynchronous Bus	Timings ^{1, 2}

Na		Characteristics	Everaccion ³	100 MHz ⁴		Unit
NO.		Characteristics	Expression	Min	Max	Unit
250	BB as	sertion window from BG input deassertion ⁵	2.5× Tc + 5	—	30	ns
251	Delay from \overline{BB} assertion to \overline{BG} assertion ⁵		2× Tc + 5	25	-	ns
Notes:	 Bit 13 in the Operating Mode Register must be set to enter Asynchronous Arbitration mode. If Asynchronous Arbitration mode is active, none of the timings in Table 2-14 is required. An expression is used to compute the maximum or minimum value listed, as appropriate. Asynchronous Arbitration mode is recommended for operation at 100 MHz. In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300 devices on the same bus in the non-overlap manner shown in Figure 2-26. 					

Figure 2-26. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal synchronization circuits on \overline{BG} and \overline{BB} inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part may assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. This is the reason for timing 250.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components that are potential masters on the same bus. If \overline{BG} input is asserted before that time, and \overline{BG} is asserted and \overline{BB} is deasserted, another DSP56300 component may assume mastership at the same time. Therefore, some non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that overlaps are avoided.

2.5.8 ESSI0/ESSI1 Timing

Table 2-18. ESSI Timings

No	Characteristics ^{4, 5, 7}	Symbol	Expression ⁹	100 MHz		Cond-	Unit
NO.					Max	ition ⁵	Onit
430	Clock cycle ¹	t _{SSICC}	$3 \times T_C$ $4 \times T_C$	30.0 40.0		x ck i ck	ns
431	Clock high period • For internal clock • For external clock		2 × T _C - 10.0 1.5 × T _C	10.0 15.0	_		ns ns
432	Clock low period • For internal clock • For external clock		$\begin{array}{c} 2\times \ T_C -10.0 \\ 1.5\times \ T_C \end{array}$	10.0 15.0	_		ns ns
433	RXC rising edge to FSR out (bit-length) high			-	37.0 22.0	xck icka	ns
434	RXC rising edge to FSR out (bit-length) low			_	37.0 22.0	xck icka	ns
435	RXC rising edge to FSR out (word-length-relative) high ²			_	39.0 37.0	xck icka	ns
436	RXC rising edge to FSR out (word-length-relative) low ²			_	39.0 37.0	xck icka	ns
437	RXC rising edge to FSR out (word-length) high			_	36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (word-length) low			_	37.0 22.0	x ck i ck a	ns
439	Data in set-up time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0	_	x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0	_	x ck i ck	ns
441	FSR input (bl, wr) ⁷ high before RXC falling edge ²			1.0 23.0	—	x ck i ck a	ns
442	FSR input (wl) ⁷ high before RXC falling edge			3.5 23.0	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0	—	x ck i ck a	ns
444	Flags input set-up before RXC falling edge			5.5 19.0	_	xck icks	ns
445	Flags input hold time after RXC falling edge			6.0 0.0	_	xck icks	ns
446	TXC rising edge to FST out (bit-length) high			_	29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low			_	31.0 17.0	x ck i ck	ns
448	TXC rising edge to FST out (word-length-relative) high ²			_	31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (word-length-relative) low ²			_	33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (word-length) high			_	30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (word-length) low			—	31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance			_	31.0 17.0	x ck i ck	ns

2.5.9 Timer Timing

No	Charaotoristics	Expression ²	100	l l mit	
NO.	Gharacteristics	Expression	Min	Max	Unit
480	TIO Low	2 × T _C + 2.0	22.0	—	ns
481	TIO High	2 × T _C + 2.0	22.0	—	ns
482	Timer set-up time from TIO (Input) assertion to CLKOUT rising edge		9.0	10.0	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	103.5	_	ns
484	CLKOUT rising edge to TIO (Output) assertion • Minimum • Maximum	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5 —	 24.8	ns ns
485	CLKOUT rising edge to TIO (Output) deassertion Minimum Maximum 	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5 —	 24.8	ns ns
Notes:	1. $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; \text{ T}_{J} = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, \text{ C}_{L} = 50$	pF.			

Table 2-19.Timer Timing¹

2. An expression is used to compute the number listed as the minimum or maximum value as appropriate.

Figure 2-40. TIO Timer Event Input Restrictions

Figure 2-42. External Pulse Generation

Packaging

This section includes diagrams of the DSP56303 package pin-outs and tables showing how the signals described in **Chapter 1**, are allocated for each package.

The DSP56303 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)

Table 3-1.	DSP56303 TQFP Signal Identification by Pin Nun	nber

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQ}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQ}	43	H0, HAD0, or PB0	68	RD
19	GND _Q	44	RESET	69	AA1/RAS1
20	Not Connected (NC), reserved	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	PCAP	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	A0
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	Not Connected (NC), reserved	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GND _A

aging

Table 3-2.	DSP56303 TQFP	Signal Identification	by Name
			.,

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GND _A	75
A14	94	D10	114	GND _A	81
A15	97	D11	115	GND _A	87
A16	98	D12	116	GND _A	96
A17	99	D13	117	GND _C	58
A2	76	D14	118	GND _C	66
A3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
Α7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GND _Q	19
AA1	69	D22	132	GND _Q	54
AA2	51	D23	133	GND _Q	90
AA3	50	D3	105	GND _Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	HO	43

9			

Table 3-2.	DSP56303 T	FQFP Signal	Identification by	Name ((Continued))
------------	------------	--------------------	-------------------	--------	-------------	---

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
RASO	70	SRD1	1	V _{CCC}	57
RAS1	69	STD0	10	V _{CCC}	65
RAS2	51	STD1	2	V _{CCD}	103
RAS3	50	TA	62	V _{CCD}	111
RD	68	тск	141	V _{CCD}	119
RESET	44	TDI	140	V _{CCD}	129
RXD	13	TDO	139	V _{CCH}	38
SC00	12	TIO0	29	V _{CCP}	45
SC01	4	TIO1	28	V _{CCQ}	18
SC02	3	TIO2	27	V _{CCQ}	56
SC10	11	TMS	142	V _{CCQ}	91
SC11	144	TRST	138	V _{CCQ}	126
SC12	143	TXD	14	V _{CCS}	8
SCK0	17	V _{CCA}	74	V _{CCS}	25
SCK1	16	V _{CCA}	80	WR	67
SCLK	15	V _{CCA}	86	XTAL	53
SRD0	7	V _{CCA}	95		

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	ТСК	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQ}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

Table 3-3. DSP56303 MAP-BGA Signal Identification by Pin Number

 Table 3-4.
 DSP56303 MAP-BGA Signal Identification by Name (Continued)

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
GND	F8	GND	J9	H4	N3
GND	F9	GND	J10	H5	P2
GND	F10	GND	J11	H6	N1
GND	F11	GND	K4	H7	N2
GND	G4	GND	K5	HA0	M3
GND	G5	GND	K6	HA1	M1
GND	G6	GND	K7	HA10	L1
GND	G7	GND	K8	HA2	M2
GND	G8	GND	K9	HA8	M1
GND	G9	GND	K10	HA9	M2
GND	G10	GND	K11	HACK/HACK	J1
GND	G11	GND	L4	HAD0	M5
GND	H4	GND	L5	HAD1	P4
GND	H5	GND	L6	HAD2	N4
GND	H6	GND	L7	HAD3	P3
GND	H7	GND	L8	HAD4	N3
GND	H8	GND	L9	HAD5	P2
GND	H9	GND	L10	HAD6	N1
GND	H10	GND	L11	HAD7	N2
GND	H11	GND _P	N6	HAS/HAS	МЗ
GND	J4	GND _{P1}	P6	HCS/HCS	L1
GND	J5	HO	M5	HDS/HDS	J3
GND	J6	H1	P4	HRD/HRD	J2
GND	J7	H2	N4	HREQ/HREQ	K2
GND	J8	НЗ	P3	HRRQ/HRRQ	J1

Table 3-4.	DSP56303 MAP-BGA Signal Identification by Name ((Continued)
------------	--	-------------

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
HRW	J2	PB14	K2	PE2	G2
HTRQ/HTRQ	K2	PB15	J1	PINIT	D1
HWR/HWR	J3	PB2	N4	RASO	N13
IRQA	C4	PB3	P3	RAS1	P12
IRQB	A5	PB4	N3	RAS2	P7
IRQC	C5	PB5	P2	RAS3	N7
IRQD	B5	PB6	N1	RD	M12
MODA	C4	PB7	N2	RESET	N5
MODB	A5	PB8	МЗ	RXD	F1
MODC	C5	PB9	M1	SC00	F3
MODD	B5	PC0	F3	SC01	D2
NC	A1	PC1	D2	SC02	C1
NC	A14	PC2	C1	SC10	F2
NC	B14	PC3	НЗ	SC11	A2
NC	H1	PC4	E3	SC12	B2
NC	M7	PC5	E1	SCK0	НЗ
NC	P1	PCAP	P5	SCK1	G1
NC	P14	PD0	F2	SCLK	G2
NMI	D1	PD1	A2	SRD0	E3
PB0	M5	PD2	B2	SRD1	B1
PB1	P4	PD3	G1	STD0	E1
PB10	M2	PD4	B1	STD1	C2
PB11	J2	PD5	C2	TA	P10
PB12	J3	PE0	F1	ТСК	СЗ
PB13	L1	PE1	G3	TDI	B3

Pr Consumption Benchmark

dc	\$6A39E8
dc	\$81E801
dc	\$C666A6
dc	\$46F8E7
dc	SAAEC94
de	¢2/2237
de	24233D
ac	\$802732
dC	\$2E3C83
dc	\$A43E00
dc	\$C2B639
dc	\$85A47E
dc	\$ABFDDF
dc	\$F3A2C
dc	\$2D7CF5
dc	SE16A8A
de	¢FCB8FB
de	
ac	\$4BEDI0
ac	\$43F371
dc	\$83A556
dc	\$E1E9D7
dc	\$ACA2C4
dc	\$8135AD
dc	\$2CE0E2
dc	\$8F2C73
dc	\$432730
de	\$192750 \$1927519
ac 	¢43000
ac	\$4AZ9ZE
ac	SA63CCF
dc	\$6BA65C
dc	\$E06D65
dc	\$1AA3A
dc	\$A1B6EB
dc	\$48AC48
dc	\$EF7AE1
dc	\$6E3006
dc	\$62F6C7
da	¢6061 ₽ 1
de	2000414 2070410
ac	\$07E41D
dC	SCB2692
dc	\$2C3863
dc	\$C6BC60
dc	
	\$43A519
dc	\$43A519 \$6139DE
dc dc	\$43A519 \$6139DE \$ADF7BF
dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C
dc dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5
dc dc dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA
dc dc dc dc dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB
dc dc dc dc dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB
dc dc dc dc dc dc dc dc dc dc	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778
dc dc dc dc dc dc dc dc dc dc dc dc dc d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51
dc dc dc dc dc dc dc dc dc dc dc dc dc d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324 \$8F2E8D
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFE7 \$28F324 \$8F2E8D \$667842
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFE7 \$28F324 \$8F2E8D \$667842 \$83E053
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324 \$8F2E8D \$667842 \$83E053 \$41ED00
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324 \$8F2E8D \$667842 \$83E053 \$A1FD90 \$662500
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324 \$8F2E8D \$667842 \$83E053 \$A1FD90 \$6B2689
de de de de de de de de de de de de de d	\$43A519 \$6139DE \$ADF7BF \$4B3E8C \$6079D5 \$E0F5EA \$8230DB \$A3B778 \$2BFE51 \$E0A6B6 \$68FFB7 \$28F324 \$8F2E8D \$667842 \$83E053 \$A1FD90 \$6B2689 \$85B68E

Pr Consumption Benchmark

```
Register Addresses Of DMA4
;
M DSR4 EOU $FFFFDF
                                 ; DMA4 Source Address Register
M DDR4 EOU SFFFFDE
                                 ; DMA4 Destination Address Register
M_DCO4 EQU $FFFFDD
                                ; DMA4 Counter
M_DCR4 EQU $FFFFDC
                                ; DMA4 Control Register
       Register Addresses Of DMA5
;
M DSR5 EOU SFFFFDB
                                 ; DMA5 Source Address Register
M_DDR5 EQU $FFFFDA
                                 ; DMA5 Destination Address Register
M_DCO5 EQU $FFFFD9
                                 ; DMA5 Counter
M_DCR5 EQU $FFFFD8
                                 ; DMA5 Control Register
     DMA Control Register
:
M_DSS EQU $3
                                 ; DMA Source Space Mask (DSS0-Dss1)
M_DSS0 EQU 0
                                ; DMA Source Memory space 0
M_DSS1 EQU 1
                                ; DMA Source Memory space 1
M_DDS EQU $C
                                ; DMA Destination Space Mask (DDS-DDS1)
M DDS0 EOU 2
                                ; DMA Destination Memory Space 0
M_DDS1 EQU 3
                                ; DMA Destination Memory Space 1
                                 ; DMA Address Mode Mask (DAM5-DAM0)
M_DAM EQU $3f0
M_DAMO EQU 4
                                 ; DMA Address Mode 0
                                 ; DMA Address Mode 1
M_DAM1 EQU 5
M_DAM2 EQU 6
                                 ; DMA Address Mode 2
                                ; DMA Address Mode 3
M_DAM3 EQU 7
M_DAM4 EQU 8
                                ; DMA Address Mode 4
M_DAM5 EQU 9
                                ; DMA Address Mode 5
M_D3D EQU 10
                                ; DMA Three Dimensional Mode
M_DRS EQU $F800
                                ; DMA Request Source Mask (DRS0-DRS4)
M_DCON EQU 16
                                ; DMA Continuous Mode
M DPR EOU $60000
                                ; DMA Channel Priority
                                ; DMA Channel Priority Level (low)
M_DPR0 EQU 17
                                 ; DMA Channel Priority Level (high)
M_DPR1 EQU 18
                                ; DMA Transfer Mode Mask (DTM2-DTM0)
M_DTM EQU $380000
                                ; DMA Transfer Mode 0
M_DTM0 EQU 19
                                ; DMA Transfer Mode 1
M_DTM1 EQU 20
                                ; DMA Transfer Mode 2
M_DTM2 EQU 21
                                ; DMA Interrupt Enable bit
M_DIE EQU 22
M_DE EQU 23
                                 ; DMA Channel Enable bit
       DMA Status Register
;
M DTD EOU $3F
                                 ; Channel Transfer Done Status MASK (DTD0-DTD5)
M_DTD0 EQU 0
                                 ; DMA Channel Transfer Done Status 0
M_DTD1 EQU 1
                                 ; DMA Channel Transfer Done Status 1
                                 ; DMA Channel Transfer Done Status 2
M_DTD2 EQU 2
                                ; DMA Channel Transfer Done Status 3
M_DTD3 EQU 3
                                ; DMA Channel Transfer Done Status 4
M_DTD4 EQU 4
                                ; DMA Channel Transfer Done Status 5
M_DTD5 EQU 5
                                ; DMA Active State
M_DACT EQU 8
M_DCH EQU $E00
                                ; DMA Active Channel Mask (DCH0-DCH2)
M_DCH0 EQU 9
                                ; DMA Active Channel 0
M_DCH1 EQU 10
                                ; DMA Active Channel 1
M_DCH2 EQU 11
                                 ; DMA Active Channel 2
•_____
```

